Airborne systems

An extensive test of laser profiler was performed at the Stuttgart University (1990) where Differential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) was integrated in the laser system for the first time to provide precise positioning and orientation (attitude) of the airborne platform. Soon after that, the scanning mechanism was designed by Optech company (Canada — ALTM system)

Laser profiler was developed in the forestry research by NASA’s Goddard space flight center (GSFC) on the basis of Riegl laser rangefinder with 20 ns wide laser pulse and repetition rate of 2 kHz. There are three main commercial suppliers of airborne laser scanning systems, Optech International Inc., Leica Geosystem, and Riegl which are producing the data for the forest inventory and biomass estimation researches.

Generally, other companies completed their systems which utilize these three laser scanner instruments. Besides these commercial systems, a number of other systems built by US government research agencies are offered for scientific research purposes, like NASA, ATM, RASCAL, SLICER, Laser Vegetation Imaging Sensor (LVIS), and ScaLARS. LVIS has been developed by NASA for the topography mapping, elevation and the forest growing on it. A special design of scanning system such as the full waveform is required for the scanning of vegetation covered regions to capture the reflected pulse in different returns. This scanner has been used in USA (California, eastern states), Central America (Costa Rica and Panama). It was also applied in Amazonian forests of Brazil to generate direct measurements of canopy height and relatively aboveground biomass map. (Shan and Toth, 2009)