Space-borne systems

The geoscience laser altimeter system (GLAS) is the only Lidar operating space-borne system. GLAS is the important part of NASA earth science enterprise carried on the ice, cloud and land elevation satellite (ICESat) from 12 January 2003 (Afzal et al., 2007). This instrument has three lasers, each of which has a 1064 nm lidar channel for surface altimetry and dense cloud heights, and a 532 nm lidar channel for the vertical distribution of clouds and aerosols (NASA, 2007). The three lasers have been operated one at a time, sequentially throughout the mission. The mission mode involved 33 day to 56 day campaign, numerous times per year, to extend the operation life. The main objective of the GLAS instrument is to measure the ice sheet elevations and changes in elevation through time. Second objective is the cloud detections and measurements, atmospheric aerosol vertical profiles, terrain elevation, vegetation cover, and sea ice thickness. The figure 1 shows the world elevation maps for 2009 ICESat elevation data (national snow and ice data center, NSIDC, available online at: http://nsidc. org/data/icesat/world_track_laser2F. html)

Nevertheless, only a small number of studies have used airborne lidar data to evaluate the DTM which was derived from satellite laser altimetry GLAS data over forested areas. GLAS which is only operating on board ICESat, records the full waveform returns, and provides a high precision elevation data with nearly global spatial coverage at a low end user cost (Fricker et al., 2005; Martin et al., 2005; Schutz et al., 2005; Magruder et al., 2007; Neuenschwander et al., 2008). Space-borne data are mainly used to model the global canopy height for evaluating carbon budget (Xing et al., 2010).

Recently, Duong et al. (2007, 2009) compared terrain and feature heights derived from the satellite (GLAS) observations with a nationwide airborne lidar dataset (the Actual Height model of the Netherlands: AHN). They found that the average differences between GLAS — and AHN-derived terrain heights are below 25 cm over bare ground and urban areas. Over forests, the differences are even smaller but with a slightly larger standard deviation of about 60 cm (Chen, 2010). Harding et al. (2001) utilized GLAS full waveform data to generate the average forest CHM, and the results presented the variations of important canopy attributes, such as height, depth, and the over-story, mid-story, and under-story forest layers. Sun et al. (2007,2008) applied GLAS waveforms to estimate the forest canopy height in the flat area in Northern China mountains, and found that the ICESat-derived forest height indices was well correlated with the field-measured maximum forest height R2 = 0.75 where R2 is the coefficient of determination.

ICESat World Elevations — Laser 2F

September 30 — October 11, 2009

image001

Fig. 1. Example of ICESat World Elevation Map