Как выбрать гостиницу для кошек
14 декабря, 2021
Microalgae are a very diverse group of organisms. The predominant organic constituent can vary from carbohydrates to proteins or lipids. The green microalgae were predominantly tested as possible substrate for biogas production (Table 20)
Substrate |
Reactor |
T (°С) |
HRT (days) |
OLR (gVS/L-day) |
VS red. (%) |
Conv. eff. (%) |
CH4 (L/L-day) |
CH4 (L/gTVS) |
CH4 (%) |
References |
Unknown cyanobacteria (Lake |
BMP assay |
16-26 |
35 |
— |
— |
— |
— |
0.366 |
60-65 |
[401] |
Dian) |
(1L) |
|||||||||
A. platesis |
Batch (0.25 L) |
38 |
35 |
— |
— |
— |
— |
0.293 |
61 |
[157] |
A. maxima |
Batch (0.12 L) |
35 |
105 |
— |
— |
— |
— |
0.33 |
— |
[158] |
Arthrospira |
Batch (11 L) |
35 |
28 |
0.91 |
— |
— |
0.28-0.29“ |
0.31-0.32 |
— |
[156] |
A. maxima (frozen, control) |
Semi- |
35 |
20 |
2 |
26 |
— |
0.38 |
0.19 |
72 |
[233] |
A. maxima (live) |
continuous |
35 |
20 |
2 |
28.6 |
— |
0.40 |
0.2 |
70 |
|
A. maxima (ultrasonic) |
(1.5 L) |
35 |
20 |
2 |
23 |
— |
0.34 |
0.17 |
75 |
|
A. maxima (50°C, pHl) |
35 |
20 |
2 |
0 |
— |
0.00 |
0 |
0 |
||
A. maxima (50°C, pH3) |
35 |
20 |
2 |
16.6 |
— |
0.22 |
0.11 |
64 |
||
A. maxima (50°C) |
35 |
20 |
2 |
28.3 |
— |
0.40 |
0.2 |
70 |
||
A. maxima (50°C, pHll) |
35 |
20 |
2 |
26.6 |
— |
0.42 |
0.21 |
73 |
||
A. maxima (50°C, pH13) |
35 |
20 |
2 |
12.9 |
— |
0.18 |
0.09 |
68 |
||
A. maxima (100°C, pHl) |
35 |
20 |
2 |
10.1 |
— |
0.12 |
0.06 |
60 |
||
A. maxima (100°C, pH3) |
35 |
20 |
2 |
20.1 |
— |
0.28 |
0.14 |
67 |
||
A. maxima (100°C) |
35 |
20 |
2 |
25.8 |
— |
0.36 |
0.18 |
71 |
||
A. maxima (100°C, pHll) |
35 |
20 |
2 |
27.8 |
— |
0.44 |
0.22 |
74 |
||
A. maxima (100°C, pH13) |
35 |
20 |
2 |
21.4 |
— |
0.28 |
0.14 |
73 |
||
A. maxima (150°C. pHl) |
35 |
20 |
2 |
4.1 |
— |
0.04 |
0.02 |
53 |
||
A. maxima (150°C, pH2) |
35 |
20 |
2 |
22.2 |
— |
0.32 |
0.16 |
70 |
||
A. maxima (150°C) |
35 |
20 |
2 |
24.2 |
— |
0.36 |
0.18 |
73 |
||
A. maxima (150°C, pHll) |
35 |
20 |
2 |
31.9 |
— |
0.48 |
0.24 |
76 |
||
A. maxima (150°C. pH13) |
35 |
20 |
2 |
8.1 |
— |
0.16 |
0.08 |
68 |
Table 19 Characteristics of anaerobic digestion of selected cyanobacteria |
36 Biogas Production from Algae and Cyanobacteria Through Anaerobic Digestion… |
40
u>
Table 19 (continued) HRT OLR
|
чо
£
VS red. (%) |
Conv. eff. (%) |
ch4 (L/L-day) |
сн4 (L/gTVS) |
сн, (%) |
References |
5 |
5.6 |
0.06 |
0.03 |
54.1 |
[160] |
20 |
17.6 |
0.24 |
0.12 |
69 |
|
40.8 |
39.2 |
0.4 |
0.2 |
72 |
|
6.7 |
6.6 |
0.07 |
0.04 |
53.3 |
|
42.3 |
— |
0.31a |
0.31 |
74 |
[411] |
26.2 |
— |
0.37а |
0.19 |
72 |
|
24.7 |
— |
0.51а |
0.17 |
69 |
|
24.2 |
— |
0.62а |
0.16 |
65 |
|
44.2 |
— |
0.69а |
0.31 |
73 |
|
38.3 |
— |
0.82а |
0.28 |
74 |
|
48.1 |
— |
1.41а |
0.36 |
76 |
|
45.8 |
_ |
0.64а |
0.33 |
73 |
|
28.7 |
— |
0.44а |
0.2 |
71 |
|
40.3 |
— |
0.84а |
0.28 |
70 |
|
37.1 |
— |
0.91а |
0.22 |
60 |
|
38.5 |
0.43а |
0.22 |
56 |
P. Bohutskyi and E. Bouwer |
90.7% A. maxima+ 93% spent |
35 |
20 |
2.2“ |
|
sulfite liquor |
||||
66.1 % A. maxima + 33.9% |
35 |
20 |
3“ |
|
spent sulfite liquor |
||||
50.6% A. maxima+A9A% |
35 |
20 |
4“ |
|
spent sulfite liquor Spent sulfite liquor |
35 |
20 |
1.95“ |
|
A. maxima |
SCSTR |
55 |
8 |
2.82“ |
(0.2 L) |
55 |
12 |
1.88“ |
|
55 |
16 |
1.41“ |
||
35 |
8 |
2.82“ |
||
35 |
12 |
1.88“ |
||
35 |
16 |
1.41“ |
||
A. maxima |
SCSTR (12 L) |
35 |
33 |
0.97 |
BMP biomethane potential; SCSTR semi-continuous stirred-tank reactor
“Estimated value from data presented in the paper
bEstimated from data given in L CH4/g COD using a COD/VS ratio of 1.5
Table 20 Characteristics of AD of green microalgae
|
HRT (days) |
OLR (gVS/L-day) |
VS red. (%) |
сн4 (L/L-day) |
CH4 (L/gVS) |
CH4 (%) |
References |
38а |
— |
— |
— |
0.47ь |
— |
[436] |
34а |
— |
— |
— |
0.32ь |
— |
|
30а |
— |
— |
— |
0.34ь |
— |
|
30а |
— |
— |
— |
inhib. |
— |
|
22а |
— |
— |
— |
0.26ь |
— |
|
22а |
— |
— |
— |
0.28ь |
— |
|
64 |
— |
— |
— |
0.32-0.38с |
68-76 |
[612] |
35 |
— |
— |
— |
0.387 |
66 |
[157] |
35 |
— |
— |
— |
0.218 |
65 |
|
35 |
— |
— |
— |
0.323 |
64 |
|
35 |
— |
— |
— |
0.178 |
62 |
|
28 |
0.91 |
— |
0.4-0.41d |
0.44-0.45 |
— |
[156] |
14 |
— |
— |
— |
0.22 |
65 |
[237] |
25 |
— |
— |
— |
0.28 |
65 |
|
45 |
— |
— |
— |
0.39 |
65 |
|
14 |
— |
— |
— |
0.22 |
65 |
|
25 |
— |
— |
— |
0.31 |
65 |
|
14 |
— |
— |
— |
0.18 |
65 |
|
25 |
— |
— |
— |
0.25 |
65 |
|
— |
0.01 |
— |
— |
0.32 |
65 |
[237] |
ЗО |
1.44 |
43.1 |
— |
0.23-0.27d |
61d |
[110] |
ЗО |
1.44 |
54 |
— |
0.31d |
62d |
|
зо |
1.44 |
— |
— |
0.3-0.31d |
61d |
|
зо |
1.44 |
— |
— |
0.315-0.326d |
— |
|
22 |
1.44 |
— |
— |
0.303d |
— |
|
11 |
1.44 |
— |
— |
0.315d |
— |
|
7 |
1.44 |
— |
— |
0.207d |
— |
Mix of algae (major: Scenedesmus sp.. |
Semi- |
35 |
10 |
2 |
— |
0.18 |
0.09d |
71.4d |
[410] |
ChloreUa sp.) |
continuous |
35 |
10 |
4 |
— |
0.573 |
0.143d |
69d |
|
(4 L) |
35 |
10 |
6 |
— |
0.818 |
0.136d |
68d |
||
75% mix of algae + 25% waste paper |
35 |
10 |
4 |
— |
0.968 |
0.24d |
64d |
||
50% mix of algae+ 50% waste paper |
35 |
10 |
4 |
— |
1.17 |
0.29d |
60d |
||
25% mix of algae + 75% waste paper |
35 |
10 |
4 |
— |
0.317 |
0.085d |
53d |
||
67% mix of algae + 33% waste paper |
35 |
10 |
3 |
— |
0.823 |
0.274d |
67d |
||
40% mix of algae+ 60% waste paper |
10 |
10 |
5 |
— |
1.607 |
0.321d |
60d |
||
33% mix of algae+ 67% waste paper |
35 |
10 |
6 |
— |
0.856 |
0.142d |
60d |
||
Waste paper |
35 |
10 |
4 |
— |
0.452 |
0.324d |
62d |
||
Tertaselmis (fresh) |
CSTR (2-5 L) |
35 |
14 |
2 |
— |
0.62d |
0.31 |
72-74 |
[609] |
Tertaselmis (dry) |
35 |
14 |
2 |
— |
0.52d |
0.26 |
72-74 |
||
Tertasehms (dry) + NaCl 35 g/L |
35 |
14 |
2 |
— |
0.5d |
0.25 |
72-74 |
||
ChloreUa sp. residues after ACIST (C/N 8.53) |
CSTR (4 L) |
25 |
15 |
5 |
— |
0.94 |
0.188 |
64.5 |
[436] |
30 |
15 |
5 |
— |
1.135 |
0.227 |
68.3 |
|||
35 |
15 |
5 |
— |
1.51 |
0.302 |
67.9 |
|||
40 |
15 |
5 |
— |
1.54 |
0.308 |
69.2 |
|||
ChloreUa sp. residues after ACIST+glycerol |
CSTR (4 L) |
25 |
15 |
5 |
— |
0.96 |
0.192 |
62 |
|
(C/N 12.44) |
30 |
15 |
5 |
— |
1.04 |
0.208 |
61.7 |
||
35 |
15 |
5 |
— |
1.475 |
0.295 |
65.3 |
|||
40 |
15 |
5 |
— |
1.325 |
0.265 |
63.1 |
|||
ChloreUa sp. (75%). Scenedesmus sp. (23%) |
CSTR |
45 |
20 |
— |
— |
0.43d |
71 |
[109] |
BMP biomethane potential; CSTR continuous stirred-tank reactor “Methane production reached asymptotic values earlier in samples with lower HRT bEstimated from data given in L CH4/g TDS using a VS/TDS ratio of 0.9 for ChloreUa and 0.85 for residues “Estimated from data given in L CH4/g COD using a COD/VS ratio of 1.5 dEstimated from data given in the paper |
because of their widespread, fast growth rate, and robustness. The BMP determined for Chlamydomonas reinhardtii, Chlorella kessleri, and Scenedesmus obliquus was 0.387, 0.218, and 0.178 L/gVS, respectively [157]. The amount of biogas production correlated well with the extent of algal degradation. C. reinhardtii exhibited a higher cell disintegration rate in comparison to C. kessleri and S. obliquus. Number of the Chlorella and Scenedesmus species as well as several other algae (e. g., Nannochloropsis) have resistant trilaminar membrane-like structure containing nonhydrolysable sporopollenin-like biopolymer—algaenan [161-164]. The overall cell wall structure has complex organization with three distinct layers: rigid internal microfibrillar, medial trilaminar, and external columnar (for green algae Coelastrum) [165]. The major algaenan functions are protection from parasites and desiccation [166]. Chlorella and Scenedesmus have internal rigid cell walls either glucose-mannose type or glucosamine-type [167-169]. In contrast, C. reinhardtii has a cell wall composed of proteins and glycoproteins [170-172]. Resistant cell wall retained S. obliquus cells undamaged after 6 months of digestion [157] . The average methane yield with different green microalgae from batch experiments is presented in Fig. 10 (error bars represents minimum and maximum values reported for each specie).
Optimal parameters reported in the literature for stable AD of a mixture of Chlorella and Scenedesmus were an OLR up to 4 gVS/L-day and an HRT greater than 11 days [110].
Fig. 11 Methane yield vs. OLR. (a, b) Gracilaria—diamonds, solid line; M. pyrifera (continuous stirred-tank reactor)—crosses, dash dot line; M. pyrifera (non-mixed vertical flow reactor)—boxes, long dash line; Ulva juices—triangles, dash dot dot line; Arthrospira—pluses, short dash line; Scenedesmus and Chlorella—circles, dots line. (c, d) Sargassum—boxes, solid line; Laminaria — circles, long dash line; Laminaria alginate extraction sludge—filled circles, dots line; Ulva— triangles, dash dot line; Ulva and manure— fi lled triangles, dash dot dot line; Enteromorpha intestinalis— crosses, short dash line |