Anaerobic Digestion of Cyanobacteria and Microalgae

4.2.1 Cyanobacteria

In contrast to many algae, the main component of cyanobacteria is proteins. They also lack a hard polysaccharide-based cell wall. These properties explain the higher digestibility of cyanobacterium species. Two genera, Arthrospira (Spirulina) and Anabaena, have been studied as a potential feedstock for the ADP. The BMP assay for a cyanobacterium mixture collected from Lake Dian resulted in a higher meth­ane yield of 0.37 L/gVS (HRT 35 days) with a methane fraction of 60-65% in the biogas [155]. The methane yield during batch digestion of Arthrospiraplatensis and Arthrospira maxima species varied from 0.29 to 0.33 L/gVS corresponding to 68-77% of the theoretical methane yield [156-158].

Samson and LeDuy studied the digestion of A. maxima in a continuous reactor and concluded that A. maxima can be the sole substrate for stable methane produc­tion. Municipal anaerobic sewage sludge can easily adapt to the cyanobacterium feedstock, and the observed methane yield was 0.26 L/gVS at an OLR of 0.97 gVS/ L-day, HRT of 33 days, and T at 30°C [159]. Despite high ammonia and fatty acids concentrations (2.5 and 2 g/L respectively), methane production was stable possibly due to high alkalinity (8 g/L) and pH of 7.55.

The incoming VS concentration, OLR, and HRT have a large influence on AD stability and methane yield with A. maxima (Fig. 9) [160]. The methane yield and

Tabic 18 Characteristics of AD of brown seaweeds

Substrate

Reactor type

T (‘

S. fluitans (bladders)

BMP (0.25 L)

35

S. fluitans (blades l

35

S. fluitans (stipe)

35

S. fluitans (whole)

35

S. pteropleuron (bladders)

35

S. pteropleuron (blades)

35

S. pteropleuron (stipe)

35

S. pteropleuron (whole plant)

35

Sargassum muticum

Batch (0.125 L)

35

M. pyrifera (ambient light)

BMP

35

L. saccharina (ambient light)

35

L. saccharina (low light)

35

L. hyperbore a

Batch (10 L)

35

L. saccharina

35

A. nodosum

35

L. hyperborea (peeled sti|x)

Batch (14 L)

35

L. hyperborea (stipe)

35

L. hyperborea (peeled sti|x)

35

L. saccharina (spring)

Batch (8 L)

35

L. saccharina (autumn)

35

L. hyperborea stem alginate

Batch (8 L)

35

extraction sieve sludge

Same, flotation sludge

35

L. hyperborea and A. nodosum

35

alginate extraction sieve sludge

Same, notation sludge

35

HRT (days)

OLR

(gVS/L-day)

VS red.

(%)

сн4

(L/L-day)

сн4

(L/gTVS)

сн4

(%)

References

60

40а

0.18

[121]

60

33.3а

0.15

60

42.5а

0.2

60

40а

0.18

60

46.3а

0.19

60

36.5а

0.15

60

26.6а

0.12

60

35.7а

0.15

50

0.01

10

[595]

60

82ь

0.43

[79]

60

58ь

0.3

60

65ь

0.24

30

0.16-0.2С

[239]

30

0.22-0.23с

30

0.14е

10

0.014а

[144]

10

0.065а

12.5

0.056а

15

0.13

60

[154]

15

0.2

60

32

0.15

60а

[149]

32

_

_

_

0.11

61а

32

0.09

56а

32

0.14

67а

908 P. Bohutskyi and E. Bouwer

M. pyrifera (21.5% mannitol content from TS)

M. pyrifera (8.3% mannitol content from TS)

M. pyrifera (ground)

M. pyrifera (ground, desalted)

M. pyrifera (ground control) M. pyrifera (ground. N and P added)

M. pyrifera M. pyrifera M. pyrifera M. pyrifera added)

M. pyrifera adopted sludge)

Table 18 (continued I

M. pyrifera (ground, inoculum D: Л + marine sediments)

M. pyrifera (ground, inoculum E: analogous to D. developed at room T)

pyrifera (ground, control) pyrifera (ground) pyrifera (ground) pyrifera (21.5% mannitol content from TS >

M. pyrifera S. fluitans

Sargassum tenerrimum

L. hyperborea L. saccharina A. nodosum

18

IS

35

IS

55

IS

55

7

CSTR (10 E)

35

50

NMVFR (USR)

35

50

(10 L)

BFR (6 E)

35

50

CSTR (50 L)

35

27

NMVFR (USR)

35

27

(5L)

SCSTR (1.5 E)

35

18

Semi-continuous

28 ±3

20

(2L)

28 ±3

30

28 ±3

40

28±3

50

Semi-continuous

26 31

(5 1.)

26

26

Semi-continuous

35

24

(101.)

35

24

35

24

M. pyrifera

Two-stage (2.5 L

37

1 + 1

0.3d

0.033“

0.109d

65

[395]

Durvillea antarctica

ASBR+ 4 L

37

1 + 1

0.3d

0.032“

0.107d

65

M. pyrifera+D. antarctica

UAF)

37

1 + 1

0.3d

0.029“

0.098d

64

L. saccharina (spring)

CSTR (8 L)

35

1.5

0.33“

0.22

35-50

[154]

L. saccharina (autumn)

35

1.5

0.41“

0.27

35-50

L. saccharina

SCSTR (2 L)

35

20

1

0.250

0.25

72

[609]

L. japonica

35

4

0.25

52

[610]

Laminaria digitata

CSTR (1 L)

37

20

1.8

52

0.558

0.31

63

[135]

Laminaria sp.

CSTR (30 m3)

35

20

2.4“

1.2“

0.5

61.2

[126]

L. saccharina

SCSTR. (50 L)

37

25

1.09“

0.24“

0.22“

[611]

37

25

1.64“

0.33“

0.2“

L. saccharina (lime pretreated

37

25

0.6“

0.18“

0.297“

pHll)

L. hyperborea sieve sludge (stem

Semi-continuous

35

23

0.15

0.042“

0.28

56“

[149]

alginate extraction)

(8L)

35

16

0.37

45.8

0.026“

0.07

47“

L. hyperborea flotation sludge

35

23

0.57

15.6

0.086“

0.15

60“

(stem alginate extraction)

35

16

0.81

46.7

0.081“

0.1

63“

L. digitata flotation sludge (from

CSTR (6 L)

37

20

0.91

56

0.25“

0.28

62

[136]

alginic acid extraction)

37

15

1.42

53

0.41“

0.29

62

37

10

1.81

49

0.52“

0.29

62

37

7.5

2.55

45

0.69“

0.27

62

BMP biomethane potential; CSTR continuous stirred-tank reactor; SCSTR semi-continuous stirred-tank reactor; NMVFR non-mixed vertical flow reactor; USR upflow solids reactor; BFR baffle-flow reactor; ASBR anaerobic sequencing batch reactor; UFA upflow anaerobic filter “Estimated from data given in the paper

bVS reduction estimated from data given in the paper using an equation VS red. = [L(CH4 / gVS)] / [L(CH4 / gVS)]^^

“Methane yield estimated from biogas yield given in the paper using a CH4/biogas ratio of 0.5 dEstimated from data given in the paper using total work volume 6 L and VS/TS ratio of 0.6

Fig. 9 Influence of the feed volatile solids (VS) concentration (a, b) and OLR (c, d) on the meth­ane yield, volumetric productivity and energy efficiency from anaerobic digestion of Arthrospira maxima in semi-continuous reactors. Triangles—HRT 40 days; diamonds—HRT 30 days; squares—HRT 20 days; circles—HRT 10 days; cross—HRT 5 days (based on [160])

methane volumetric production rate were 0.04-0.36 L/gVS and 0.17-0.8 L/L-day, respectively. The maximum methane yield was obtained at HRT equal to 30 days, VS concentration of 20 gVS/L, and the OLR of 0.67 gVS/L-day. Despite a high concentration of ammonia (1.9-7.1 g/L) and volatile acids (up to 23.2 g/L), the methane production was stable with the exception of operation with HRT of 5 days and high feed concentration at HRT of 10 days. The average methane content of the biogas was in range of 69-71%. At high OLRs, it dropped to 46-60%, which is evidence for inhibition of methanogens. A stable ADP occurred when the alkalinity was high (7.2-29 g CaCO3/L) (Table 19).