Fluxes of methane across the sediment-water and the air-water interfaces

image180

Methane diffusion rate from deeper sediment layers depends on a methane concentration gradient whilst is affected by oxidation and rate of methanotrophic bacteria consumption. When diffusion fluxes are positive (positive values indicate net CH4 production), then surface water is enriched by methane which in turn may be a part of downstream transport or is further emitted to the atmosphere (Fig. 4).

On the contrary, when the fluxes of methane across the sediment-water interface are negative then all methane produced in the sediments is likely oxidized and consumed by methanotrophic bacteria here or transported via subsurface hyporheic flow.

Calculated diffusive fluxes of CH4 ranged from 0.03 to 2307.32 pg m-2 day-1 along the longitudinal profile. The lowest average values of diffusive fluxes were observed at study site II (0.11 ± 0.05 pg m-2 day-1) while the highest average values were those observed at study site IV (885.81 ± 697.54 pg m-2 day-1). Direct benthic fluxes of CH4 using the benthic chambers were measured at study site IV only and ranged from 0.19 to 82.17 mg m-2 day-1. We observed clear negative relationships between benthic methane fluxes and the flow discharge. During higher discharges when the stream water is pushed into sediments, methane diffusing from
deeper sediments upward is either transported by advection through sediments downstream or is probably almost completely oxidized by methanotrophic bacteria due to increasing oxygen supply from the surface stream. As a consequence, very low or no benthic fluxes were recorded during the time of high flow discharge. Compared to calculated diffusive fluxes it is clear that fluxes obtained by direct measurement were approximately 15* higher than the fluxes calculated with using Fick’s first law. Thus, direct benthic fluxes were used for a calculation of water column CH4 budget.

Gaseous fluxes from surface water to the atmosphere were found at all localities except locality I, where emissions were not mesured directly but were calculated lately using a known relationships between concentrations of gases in surface water and their emissions to the atmosphere found at downstream laying localities II-V. Methane showed an increase in emissions toward downstream where highest surface water concentrations have also occured (Table 4). Methane emissions measured at localities II-V ranged from 0 — 167.35 mg m-2 day-1 and no gradual increase in downstream end was found in spite of our expectation. However, sharp increase in the amount of methane emitted from the surface water was measured at lowermost localities IV and V (Tab. 4). We found positive, but weak correlation between surface water methane concentrations and measured emissions (rs = 0.45, p < 0.05)(Fig. 5).

Locality/Gas

CH4 [mg m-2day-1]

Locality I.

2.39

Locality II.

0.25 (0 — 0.6) n = 9

locality III.

1.3 (0 — 5.01) n = 10

Locality IV.

32.1 (7.3 — 87.9) n = 8

Locality V.

36.3 (2.8 — 167.4) n = 12

Table 4. Average emissions to the atmosphere and their range in parenthesis and from all localities except locality I. Emissions values for the locality I were calculated using a known relationships between concentrations of methane gas in surface water and its emissions to the atmosphere found at downstream laying localities II-V. n means sample size