Novel multienzyme complex system from P. curdlanolyticus strain B-6

Efficient enzymatic degradation of lignocellulosic biomass requires a tight interaction between the enzymes and their substrates, and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure. Multienzyme complexes, cellulosomes from anaerobic cellulolytic microorganisms, are dedicated to hydrolyzing lignocellulosic substances efficiently because of a large variety of cellulases and hemicellulases in complexes, useful enzymatic properties, and binding ability to insoluble cellulose and/or xylan via CBMs (Bayer et al., 2004; Doi and Kosugi, 2004; Schwarz et al., 2001; Shoham et al., 1999). When compared with aerobic enzymes, they produce several individual enzymes, but microorganisms are not binding to insoluble substrates. However, P. curdlanolyticus B-6 was found to produce a multienzyme complex under aerobic conditions (Pason et al., 2006a, 2006b). Little information has been reported on cellulosome-like multienzyme complexes produced by aerobic bacterium (Kim & Kim, 1993; Jiang et al., 2004; van Dyk et al., 2009). Therefore, the multienzyme complex produced by strain B-6 is critical for improving plant biomass degradation.