Towards the Production of Second Generation Ethanol from Sugarcane Bagasse in Brazil

T. P. Basso, T. O. Basso, C. R. Gallo and L. C. Basso

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/54179

1. Introduction

Brazil and the United States produce ethanol mainly from sugarcane and starch from corn and other grains, respectively, but neither resource are sufficient to make a major impact on world petroleum usage. The so-called first generation (1G) biofuel industry appears unsustainable in view of the potential stress that their production places on food commodities. On the other hand, second generation (2G) biofuels produced from cheaper and abundant plant biomass residues, has been viewed as one plausible solution to this problem [1]. Cellulose and hemicellulose fractions from lignocellulosic residues make up more than two-thirds of the typical biomass composition and their conversion into ethanol (or other chemicals) by an economical, environmental and feasible fermentation process would be possible due to the increasing power of modern biotechnology and (bio)-process engineering [2].

Brazil is the major sugar cane producer worldwide (ca. 600 million ton per year). After sugarcane milling for sucrose extraction, a lignocellulosic residue (sugarcane bagasse) is available at a proportion of ca. 125 kg of dried bagasse per ton of processed sugarcane. Therefore, sugarcane bagasse is a suitable feedstock for second generation ethanol coupled to the first generation plants already in operation, minimizing logistic and energetic costs.

State-owned energy group Petrobras is one of the Brazilian groups leading the development of second generation technologies, estimating that commercial production could begin by 2015. Other organizations making significant contributions to next generation biofuels in Brazil include the Brazilian Sugarcane Technology Centre (CTC), operating a pilot plant for the production of ethanol from bagasse in Piracicaba (Sao Paulo) [3]. Recently, GraalBio (Grupo Brasileiro Graal) has stated publically that will start production of bioethanol from sugarcane bagasse in one plant located at the Northeast region of the country.

Pretreatment, hydrolysis and fermentation can be performed by various approaches. According to a CTC protocol, the process of manufacturing ethanol from bagasse is divided into the following steps. First, the bagasse is pretreated via steam explosion (with or without a mild acid condition) to increase the enzyme accessibility to the cellulose and promoting the hemicellulose hydrolysis with a pentose stream. The lignin and cellulose solid fraction is subjected to cellulose hydrolysis, generating a hexose-rich stream (mainly composed of glucose, manose and galactose). The final solid residue (lignin and the remaining recalcitrant cellulose) is used for heating and steam generation. The hexose fraction is mixed with 1G cane molasses (as a source of minerals, vitamins and aminoacids) and fermented by regular Saccharomyces cerevisiae industrial strains (not genetically modified) using the same fermentation and distillation facilities of the Brazilian ethanol plants. The pentose fraction will be used as substrate for other biotechnological purposes, including ethanol fermentation.

Researchers are focusing on cutting the cost of the enzymes and the pretreatment process, as well as reducing energy input. Production of ethanol from sugarcane bagasse will have to compete with the use of bagasse for electricity cogeneration. Depending on the efficiency of the cogeneration plant, about half of the bagasse is required to produce captive energy in the form of steam and energy at the sugar and ethanol facility. It is estimated that the surplus bagasse could increase the Brazilian ethanol production by roughly 50% [3].