The vermicomposting process

Vermicomposting is defined as a bio-oxidative process in which detritivore earthworms interact intensively with microorganisms and other fauna within the decomposer community, accelerating the stabilization of organic matter and greatly modifying its physical and biochemical properties [75]. Epigeic earthworms with their natural ability to colonize organic wastes; high rates of consumption, digestion and assimilation of organic matter; tolerance to a wide range of environmental factors; short life cycles, high reproductive rates, and endurance and resistance to handling show good potential for vermicomposting [76]. The earthworm species Eisenia andrei, Eisenia fetida, Perionyx excavatus and Eudrilus eugeniae display all these characteristics and they have been extensively used in vermicomposting facilities.

Vermicomposting systems sustain a complex food web that results in the recycling of organic matter and release of nutrients [77]. Biotic interactions between decomposers (i. e., bacteria and fungi) and earthworms include competition, mutualism, predation and facilitation, and the rapid changes that occur in both functional diversity and in substrate quality are the main properties of these systems [77]. The biochemical decomposition of organic matter is primarily accomplished by the microbes, but earthworms are crucial drivers of the process as they may affect microbial decomposer activity by grazing directly on microorganisms [78-79], and by increasing the surface area available for microbial attack after the comminution of organic matter [8]. Furthermore, earthworms are known to excrete large amounts of casts, which are difficult to separate from the ingested substrate [8]. The contact between worm-worked and unworked material may thus affect the decomposition rates [80], due to the presence of microbial communities in earthworm casts different from those contained in the material prior to ingestion [81]. In addition, the nutrient content of the egested materials differ from that in the ingested material [82], which may enable better exploitation of resources, because of the presence of a pool of readily assimilable compounds in the earthworm casts. Therefore, the decaying organic matter in vermicomposting systems is a spatially and temporally heterogeneous matrix of organic resources with contrasting qualities that result from the different rates of degradation that occur during decomposition [83].

The impact of earthworms on the decomposition of organic waste during the vermicomposting process is initially due to gut — associated processes (GAPs), i. e., via the effects of ingestion, digestion and assimilation of the organic matter and microorganisms in the gut, and then casting [79] (Figure 1). Specific microbial groups respond differently to the gut environment [84] and selective effects on the presence and abundance of microorganisms during the passage of organic material through the gut of these earthworm species have been observed. For instance, some bacteria are activated during the passage through the gut, whereas others remain unaffected and others are digested in the intestinal tract and thus decrease in number [78]. These findings are in accordance with a recent work that provides strong evidence for a bottleneck effect caused by worm digestion (E. andrei) on microbial populations of the original material consumed [79]. This points to the earthworm gut as a major shaper of microbial communities, acting as a selective filter for microorganisms contained in the substrate, thereby favouring the existence of a microbial community specialised in metabolising compounds produced or released by the earthworms, in the egested materials. Such selective effects on microbial communities as a result of gut transit may alter the decomposition pathways during vermicomposting, probably by modifying the composition of the microbial communities involved in decomposition, as microbes from the gut are then released in faecal material where they continue to decompose egested organic matter. Indeed, as mentioned before, earthworm casts contain different microbial populations to those in the parent material, and as such it is expected that the inoculum of those communities in fresh organic matter promotes modifications similar to those found when earthworms are present, altering microbial community levels of activity and modifying the functional diversity of microbial populations in vermicomposting systems [80]. Previous studies have already shown that a higher microbial diversity exists in vermicompost relative to the initial substrate [19,85]. Upon completion of GAPs, the resultant earthworm casts undergo cast — associated processes (CAPs), which are more closely related to ageing processes, the presence of unworked material and to physical modification of the egested material (weeks to months; Figure 1). During these processes the effects of earthworms are mainly indirect and derived from the GAPs [17].

image119

Figure 1. Earthworms affect the decomposition of the animal manure during vermicomposting through ingestion, digestion and assimilation in the gut and then casting (gut- associated processes); and cast — associated processes, which are more closely related with ageing processes.

Overall, vermicomposting includes two different phases regarding earthworm activity: (i) an active phase during which earthworms process the organic substrate, thereby modifying its physical state and microbial composition [86], and (ii) a maturation phase marked by the displacement of the earthworms towards fresher layers of undigested substrate, during which the microorganisms take over the decomposition of the earthworm-processed substrate [17-18]. The length of the maturation phase is not fixed, and depends on the efficiency with which the active phase of the process takes place, which in turn is determined by the species and density of earthworms, and the rate at which the residue is applied [8]. During this aging, vermicompost is expected to reach an optimum in terms of its nutrient content and pathogenic load, thereby promoting plant growth and suppressing plant diseases [8]. However, unlike composting, vermicomposting is a mesophilic process (<35 °C), and as such substrates do not undergo thermal stabilisation that eliminates pathogens. Nevertheless, it has been shown that vermicomposting may reduce the levels of different pathogens such as Escherichia coli, Salmonella enteritidis, total and faecal coliforms, helminth ova and human viruses in different types of waste [75]. In a recent work [78], a reduction by 98% in the number of faecal coliforms of pig slurry was detected after two weeks of processing in the presence of E. fetida, which indicates that the own earthworm digestive abilities play a key role in the reduction of the pathogenic load of the parent material. In a previous study, these authors found that the decrease in pathogenic bacteria (i. e. total coliforms) as a result of gut transit differed among four vermicomposting earthworm species (Eisenia fetida, Eisenia andrei, Lumbricus rubellus and Eudrilus eugeniae) [87]. This was consistent with the fact that specific microbial groups respond differently to the gut environment, depending on the earthworm species. The pathogen considered is another important factor controlling the reduction in the pathogenic load during the process. Parthasarathi et al. [88] observed that earthworms did not reduce the numbers of Klebsiella pneumoniae and Morganella morganii, whereas other pathogens such as Enterobacter aerogenes and Enterobacter cloacae were completely eliminated. In a recent study [89] a decrease in the abundance of faecal enterococci, faecal coliforms and Escherichia coli was recorded across the layers of an industrial-scale vermireactor fed with cow manure; whereas no changes were reported for total coliforms, Enterobacteria or Clostridium. These findings are of great importance for the optimisation of the vermicomposting process because despite the pioneering studies of Riggle [90] and Eastman et al. [91], little is known about this process in industrial-scale systems, that is, vermicomposting systems designed to deal with large amounts of wastes. This selective effect on pathogens indicates that earthworms not only modify the abundance of such pathogenic bacteria but also alter their specific composition. According to [89], the unaffected pathogens could benefit as a result of the overall decrease in bacterial and fungal biomass across the layers of the reactor, thereby diminishing possible competition for resources.

Collectively, the aforementioned studies highlight the importance of monitoring the changes in microbial communities during vermicomposting, because if the earthworms were to stimulate or depress microbiota or modify the structure and activity of microbial communities, they would have different effects on the decomposition rate of organic matter, thereby influencing the vermicompost properties, which is critical to guarantee a safe use of this end-product as an organic amendment and thus benefit both agriculture and the environment.