Animal Manures: Recycling and Management Technologies

Maria Gomez-Brandon, Marina Fernandez-Delgado Juarez, Jorge Dominguez and Heribert Insam

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53454

1. Introduction

Many environmental problems of current concern are due to the high production and local accumulations of organic wastes that are too great for the basic degradation processes inherent in nature. With adequate application rates, animal manure constitutes a valuable resource as a soil fertilizer, as it provides a high content of macro — and micronutrients for crop growth and represents a low-cost, environmentally — friendly alternative to mineral fertilizers [1]. However, the intensification of animal husbandry has resulted in an increase in the production of manure — over 1500 million tonnes are produced yearly in the EU-27 [2] as reported by Holm-Nielsen et al. [3]- that need to be efficiently recycled due to the environmental problems associated with their indiscriminate and untimely application to agricultural fields. The potentially adverse effects of such indiscriminate applications include an excessive input of harmful trace metals, inorganic salts and pathogens; increased nutrient loss, mainly nitrogen and phosphorus, from soils through leaching, erosion and runoff-caused by a lack of consideration of the nutrient requirements of crops; and the gaseous emissions of odours, hydrogen sulphide, ammonia and other toxic gases [4]. In fact, the agricultural contribution to total greenhouse gas emissions is around 10%, with livestock playing a key role through methane emission from enteric fermentation and through manure production. More specifically, around 65% of anthropogenic N2O and 64% of anthropogenic NH3 emissions come from the worldwide animal production sector [5].

The introduction of appropriate management technologies could thus mitigate the health and environmental risks associated with the overproduction of organic wastes derived from the livestock industry by stabilizing them before their use or disposal. Stabilisation involves the decomposition of an organic material to the extent of eliminating the hazards and is normally reflected by decreases in microbial biomass and its activity and in concentrations

© 2013 Gomez-Brandon et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

of labile compounds [6]. Composting and vermicomposting have become two of the best — known environmentally appropriate technologies for the recycling of manures under aerobic conditions [6-7], by transforming them into safer and more stabilised products (compost and vermicompost) with benefits for both agriculture and the environment. Unlike composting, vermicomposting depends on the joint action between earthworms and microorganisms and does not involve a thermophilic phase [8]. However, more than a century had to pass before vermicomposting was truly considered a field of scientific knowledge or even a real technology, despite Darwin [9] having already highlighted the important role of earthworms in the decomposition of dead plants and the release of nutrients from them.

Although microbial degradation under oxygen is usually faster and, as such aerobic processes are thermodynamically more favorable than anaerobic processes, in recent years, anaerobic digestion (AD) has become an upcoming technology for the treatment of animal manures [3, 10-13]. On the one hand, pretreatment of manure by anaerobic digestion can involve some advantages including malodor reduction, decreased biochemical oxygen demand, pathogen control, along with a reduction in the net global warming potential of the manure [4,14]. AD reduces the risk of water pollution associated with animal manure slurries (i. e., eutrophication) by removing 0.80-0.90 of soluble chemical oxygen demand and it improves human/farm cohabitation in rural regions by reducing odor emissions by 70­95% [4]. This process has other direct advantages beyond these, which are related to biogas production for renewable energy and the enrichment of mineral fractions of N and P during digestion [4,10], resulting in a more balanced nutrient mix and increased nutrient bioavalability for plants compared with undigested manure [15].

Therefore, the purpose of this chapter is to give an overview of the three major management technologies of manure recycling, including the aerobic processes of composting and vermicomposting and the anaerobic digestion for biogas production. The main changes that occur in the substrate from a chemical and microbial viewpoint during the specific phases of each degradation process are addressed, as such changes determine the degree of stability of the end product and in turn its safe use as an organic amendment. Different methods that have been proposed to evaluate compost stability are summarised. Also, the influence of the end products derived from each process on the soil microbiota and disease suppressiveness are discussed.