Pot trial on lettuce (experimental plan, plant biometric survey and elemental analysis)

In a 300 m2 greenhouse, lettuce (Lactuca sativa L., var. Romana) were transplanted into 2 L and 16 cm diameters pots, containing the A and B soils; growing density was 16 pots m2. The experiment was performed from April to June, 2009, at temperatures range of 15-28°C.

Treatments consisted in a factorial combination of two increasing N doses (200 and 400 kgN*ha-1), applied as solid fraction of digested swine livestock manure, not-digested solid fraction of swine livestock manure and granular urea [CO(NH2)2], taken as conventional mineral fertilization; not-fertilized soils were also considered as control treatments. Even if the N recommended dose for lettuce growth is about 90-100 kgN*ha-1, the choice of such high N supply was made on the basis of the need to overcome the limit of 170 KgN ha-1 by substituting these organic biomasses rich in N to the mineral fertilization, without incurring in undesired effects on plant and environment: the dose of 400 kgN*ha-1 was just applied for evaluating its potential phyto-toxicity on lettuce in relation to the different fertilization treatments. The corresponding fertilizers’doses per pot were: 128.6 g and 257.2 g for ND, 153.2 g and 306.3 g for D and 1.4 g and 2.6 g for urea.

Treatments were arranged in a randomized complete-block design with six replicates. Drip irrigation was managed in relation to plant water-demand, as reported in Figure 2.

image99

Figure 2. Example of pot cultivation of lettuce in greenhouse; drip irrigation was used for guaranteeing daily water supply to the plants.

Lettuce plants were harvested 70 days from sown; biomass dry weight (g), dry matter (%), leaf area (cm2) and leaf number were determined for each plants. In order to evaluate the effect of alternative fertilization treatments on micro and micronutrient uptake by lettuce, N, P, K, Mg, Cu, B, Fe, Mn leaf contents, plant material was incinerated at 400°C for 24 hours; ashes were then redissolved in HCl 0.1N and the supernatant filtrated to obtain a limpid solution; the nutrient content was determined by simultaneous plasma emission spectrophotometer (ICP-OES) on obtained solution and calculated in relation to dry matter.