Total Trucks Required — 24-h Hauling

To achieve 24-h hauling, the truck drivers will work 8-h shifts and the trucks will run continuously from 0600 Monday to 0600 Sunday, a total of 144 h/wk. The total racks processed each week are 630, equal to 315 truckloads. If a uniform delivery is assumed, the average truck unload time is,

315 trucks / 144 h = 2.2 trucks / h = 1 truck /27 min.

This productivity is well within the Rack System design goal of a 10 min unload time. As previously stated, the 24-h hauling concept envisions that the SSL crew will leave a supply of loaded racks on trailers at the SSL when they finish their 10-h workday. These racks will be hauled during the night. The next morning, the loading crew will load empty racks delivered during the night and load them during their workday.

The key variable in hauling is the truck cycle time. To calculate cycle time, for example, an average haul distance is needed. An actual database was developed for a proposed bioenergy plant location at Gretna, Virginia, USA to calculate the average haul distance.

An analysis was done for a 30-mi (48 km) radius around Gretna to identify potential production fields based on current land use determined from current aerial photography and GIS methods. It is conservatively assumed that 5% of the total land was assigned into switchgrass production. SSLs were established at 199 locations (Figure 5), and the existing road network was used to determine the travel distance from each SSL to the proposed plant location at Gretna. Some loads were hauled 2 miles (3.2 km) and some were hauled over 40 miles (64 km). A weighted ton-mi parameter was computed and found to be 25.4 miles (40.6 km). This means that, across all 199 SSLs, each ton travels an average of 25.4 miles (40.6 km) to get to the plant.

Truck cycle time is calculated using the 25.4-mile average haul distance, a 45 mph average speed, 10-min to hook/unhook trailers a SSL, and 10-min to lift full and empty racks from the trailers. Theoretical cycle time is 1.46 h. In 24 hours of operation, one truck can haul:

24 h/ (1.46 h/ load) = 16.4 loads per truck per day

Assuming that a truck fleet can average 70% of the theoretical capacity, then (0.7*16.4 =11.5 loads per truck per day can be achieved. Remember, since the trucks run continuously, a decimal number of loads can be used as the average achieved per-day of productivity.

It is not practical to use the each-haul contractor-runs-their-own-trucks assumption for 24-h hauling. The way to maximize truck fleet productivity is to have the Feedstock Manager have the control to send any truck to any SSL where a trailer with full racks is available. This greatly facilitates the hauling at both day-haul and night-haul SSLs.

Total trucks being controlled by the Feedstock Manager is:

53 loads / day required at the plant /11.5 loads per truck = 4.6 trucks (5 trucks’)

Since five SSL crews, one per SSL, are loading trailers/racks. More realistic is that eight to ten trucks will be available and some would also have responsible for bring other supplies to the biorefinery or hauling waste and other value-added products from the biorefinery.