Modeling of biomass harvesting and handling systems for field operations

There are numerous studies developing for the optimum set of field equipment where the unit operations affect the performance of units upstream or downstream. Review of this literature is beyond the scope of this chapter. However, several simulation programs are highlighted that specifically addresses a biomass harvest and delivery system.

The Integrated Biomass Supply Analysis and Logistics Model (IBSAL) is a simulation model which simulates operations in the field [22,38,41]. ISBAL is very useful for the simulation of operations that collects feedstock from the field and examines the flow of biomass into storage. IBSAL is best used for drawing conclusions about a sequential set of events. For example, if the user has a defined number of fields, a defined set of equipment, and a target number of tons to be harvested each month (each week) then IBSAL can provide valuable guidance for optimum biomass collection. The influence of weather, equipment breakdowns, and other disturbances to the biomass system can be "played" with a series of simulations.

The BioFeed model [43] determines the overall system optimum, and integrates the important operations in the biomass chain into a single framework. It is possible that the optimal solution recommended by BioFeed may not be implemented in a real system, either due to unforeseen disturbances such as weather or due to the actions of independent stakeholders such as farmers. However, an integrated model such as Bio-Feed determines the optimal configuration, system bottlenecks, and potential improvements. Such a model can be useful in quantifying the systemic impacts of technology improvement [42].

The BioFeed model results were compared to recent studies in literature [22,31,33]. The scope of the BioFeed model was similar to the scenarios developed in [22], where the delivered cost was estimated to be about $35/Mg (d. b.) excluding biomass size reduction. The major differences between ISBAL and BioFeed were harvesting and storage costs. While Kumar and Sokhansanj [22] ignored the storage costs, they also considered a self-propelled forage harvester which had a higher throughput capacity than the mower-conditioner considered in BioFeed, thereby reducing the cost. Khanna et al. [31] reported the switchgrass delivered cost of $64.84/Mg, which was similar to the BioFeed cost estimate. The study by Duffy [33] estimated the delivered cost to be $124.30/Mg. However, the major difference in the estimates was due to a much higher establishment cost.

Since the scope of the analyses and the assumptions differed for these studies, it is impossible to make specific comparisons. However, these comparisons illustrate that the overall model predictions agree reasonably well.