Field loss

The yield losses of different herbaceous biomass feedstocks while standing in the field will impact the harvest systems and the windows of opportunities to gather the feedstocks into storage. The inventory losses will be impacted by herbaceous biomass feedstocks, package configurations and integrity, storage facilities and time in storage. Loss of dry matter is also an important parameter in biomass collection and transportation.

Biomass loses dry matter due to its high moisture or dryness. Leaves and other fragile parts of the plant are broken and lost in the wind or mixed with soil. Some of the losses occur during storage due to fermentation and breakdown of carbohydrates to carbon dioxide and other volatiles. Unfortunately the exact account of switchgrass losses in the field or during storage is not available. Sanderson et al. [21] reported dry matter loss in baling and storage of switchgrass and stated that the overall losses were less than for legume hay. They estimated that switchgrass bales stored outside without protection resulted in a dry matter loss of 13% of the original bale dry weight. They also estimated that dry matter loss of 1-5% during baling depending on the moisture content. Kumar and Sokhansanj estimated field and storage losses for straw and stover [22]. Other studies have also estimated the dry matter loss of biomass during storage, collection and transport [23-26]. Turhollow [27] estimated the losses from switchgrass to be similar to losses in alfalfa. The study estimated 8% losses for a mower-conditioner, 3% for a rake, 10% for a round baler, and 0.1% for a round bale wagon. He estimated average loss of 15% over 6 months of storage. A recent study showed that the dry matter loss in switchgrass collection (including storage) is less than 2% for different collection methods.

Moisture causes damage (microorganism growth) and subsequent dry matter losses in stored switchgrass bales. Several studies have shown that dry matter losses in switchgrass bales are greater for bales stored outside as compared to bales stored inside [18,22,28]. Moreover, dry matter losses are far greater for covered rectangular bales than uncovered round bales [18]. Large uncovered round bales had a better economic return than covered rectangular bales, when considering the cost due to mass loss during storage [18]. However, another study highlighted their successful use of rectangular bales [29]; the cost of covered storage was more than offset by the reduction in hauling cost for the square bales.