Constraints for a typical biomass logistics system

3.1. Constraints set by resource

Any biomass crop that provides an extended harvest season has an advantage because most biorefineries want to operate as many hours per year as possible. Continuous operation yields the maximum product per unit of capital investment. Herbaceous crops cannot be harvested during the growing season. Thus, storage is always a component in a single­feedstock logistics system design.

Two examples are discussed from opposite ends of the length-of-harvest-season spectrum. In the Southeastern United States, wood is harvested year-round. This is referred to as "stored on the stump." Weather conditions in the Southeast are such that few harvest days are lost in the winter due to ice and snow. On the other end of the spectrum, consider the harvest of corn stover in the Upper Midwest of the United States. The grain harvest is completed in the fall, and then the stover is collected. In some years, there are less than 15 days between the completion of the grain harvest and the time when the fields are covered with snow, and no stover can be collected. All feedstock required for year-round operation of a bioenergy plant, if it uses only corn stover, must be harvested in a three — to five-week period. This is a significant challenge for a logistics system.

3.2. Constraints set by purchaser of raw biomass

Biorefinery operators are interested in the cost of the feedstock as it enters their plant. The plant can burn the biomass directly to produce heat and power, or it can use the biomass as a feedstock for some more complex conversion processes to produce a high-value product. The term "feedstock" is used to refer to any raw biomass before its chemical structure is modified by a conversion process, which can be direct combustion, thermo-chemical, or biological.

Feedstock cost ($/dry ton) is defined as the cost of the stream of size-reduced material entering the reactor at the Bioenergy plant for 24/7 operation. The reactor is defined as the unit operation where an initial chemical change in the feedstock occurs. The reason for choosing this reference point for the biomass logistics system is two-fold.

1. The plants that can operate continuously, 24/7, have an advantage. Maximum production (tons/y) per unit of capital investment gives a competitive advantage in the market place — cost to produce the product is lower.

2. Some logistics systems do size reduction with the harvesting machine, while some size reduce at a transfer point between in-field hauling machines and highway hauling machines (perhaps as a pre-requisite to a densification step), and some size reduce at the entrance to the processing plant. In order to compare the several systems, it is necessary to have a consistent end point for the system analysis.

The readers should be aware that many studies in the literature select a different analysis endpoint than used here. A typical endpoint is the cost of feedstock when a truckload of raw biomass enters the plant gate. This reference point is favorable as many agricultural and forest industries pay the producer when the raw material is delivered to the plant.