Field capacity and efficiency of biomass harvest machines

The equipment used for baling and in-field hauling is a critical issue to the farm owners. More efficient harvest systems coupled with well-matched harvesting technologies specific to farm size and crop yield can minimize costs. The importance of understanding the linkage between various unit operations in the logistics chain was illustrated [6,7]. Similarly, researchers have quantified the handling and storage costs for large square bales at a bioenergy plant [8]. However, in both of these evaluations the details of field operations and field capacities of machines involved in the field harvesting and handling were not available

[9] . Instead, costs of bales at the farm gate were used to analyze bioenergy production costs. To maximize the field efficiency of field machine systems, it is essential for farm managers to know the field capacity of each machine involved in harvesting. In addition, quantitatively understanding the capacity of biomass harvest machines is essential to assess daily production and supply rate for a biorefinery or a storage facility.

The field efficiency of rectangular balers can be determined by calculating the theoretical material capacity of the baler and actual field capacity [10]. Calculation of material capacity can be demonstrated using a large rectangular baler as an example. The end dimensions of the large bales were 1.20 m * 0.90 m; bale length was 2.44 m. The depth and width of the chamber were 0.9 m and 1.2 m, respectively. Plunger speed was 42 strokes per minute. Measured bale density was 146 kg/m3, and the thickness of each compressed slice in bale was 0.07 m. Thus, calculated theoretical bale capacity using equation 11.60 in [10] is 27.83 Mg/h. The plunger load could be set higher and produce higher density bales.

The theoretical capacity was obtained from a baler manufacturer under ideal conditions. Ideal conditions exist when a baling operation has [11]:

1. Long straight windrows

2. Windrows prepared with consistent and recommended density (mass/length)

3. Properly adjusted and functioning baler

4. Experienced operator

Actual field capacity of a baler will be impacted by the size and shape of the field, crop type, yield and moisture content of the crop at harvest, and windrow preparation. Typical field efficiencies and travel speeds can be found from ASAE Standards D497 [12]. Cundiff et al.

[11] analyzed the field baler capacity and considered the effect of field size on baler field capacity. They found that the field capacities of round and large rectangular balers were 8.5 Mg/h and 14.4 Mg/h, respectively.

Another example of testing the baling capacity of a large rectangular would be the field tests conducted on wheat straw and switchgrass fields [13,14]. Results showed that actual field capacity of a large rectangular baler was between 11 and 13 Mg/h. This indicates that the field capacity of a large rectangular baler could be 50% or less compared to its theoretical capacity.