Harvest Systems and Analysis for Herbaceous Biomass

Jude Liu, Robert Grisso and John Cundiff

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53875

1. Introduction

Biomass is a distributed energy resource. It must be collected from production fields and accumulated at storage locations. Previous studies of herbaceous biomass as a feedstock for a bioenergy industry have found that the costs of harvesting feedstocks are a key cost component in the total logistics chain beginning with a crop on the field and ending with a stream of size-reduced material entering the biorefinery. Harvest of herbaceous biomass is seasonal and the window of harvest is limited. Biomass needs to be stored at a central location. Normally, several or many of these central storage locations in a certain range of a biorefinery are needed to ensure 24 hours a day and seven days a week supply. These centralized storage locations are commonly called satellite storage locations (SSL). The size and number of SSLs depend on the size of the biorefinery plant, availability of biomass within a given radius, window of harvest, and costs.

It is convenient to envision the entire biomass logistics chain from fields to biorefineries with three sections. The first section is identified as the "farmgate operations", which include crop production, harvest, delivery to a storage location, and possible preprocessing at the storage location. This section will be administrated by farm clientele with the potential for custom harvest contracts. The second section is the "highway hauling operations," and it envisions commercial hauling to transport the biomass from the SSL to the biorefinery in a cost effective manner. The third section is the "receiving facility operations," and it includes management of the feedstock at the biorefinery, control of inventory, and control of the commercial hauler contract holders to insure a uniform delivery of biomass for year-round operation.

Agricultural biomass has low bulk density, and it is normally densified in-field with balers, or chopped with a self-propelled forage harvester. Currently, there are four prominent harvesting technologies available for biomass harvesting [1]. They are: (1) round baling, (2)

Подпись: Chapter 6

© 2013 Liu et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

rectangular baling, (3) chopping with a forage harvester, and separate in-field hauling, and

(4) a machine that chops and loads itself for in-field hauling (combined operation). Large round and large rectangular balers are two well-known and widely accessible harvesting technologies [2], which offer a range of advantages and disadvantages to farmgate operations. Round bales have the ability to shed water. When these bales are stored in ambient storage, they will store satisfactorily without covering and storage cost is significantly reduced. The round baler, because it is a smaller machine with fewer trafficability issues, can be used for more productive workdays during an extended harvest season over the winter months [3]. Large rectangular bales have greater bulk density, ease of transport, and increased baler productivity (Mg/h). However, the increased capital cost for the large rectangular baler and the bales’ inability to shed water limit its use on farms in Southeastern United States. Bale compression machines are available to compress a large rectangular bale and produce high-density packages [4]. The densified package has two or three times higher density than the field density of large rectangular bales [5].

The goal of an effective logistics system is to streamline storage, handling, and preserve the quality of the biomass through the entire logistics chain. This goal will minimize average feedstock cost across year-round operation. The farmer shares the goal to preserve the quality of the biomass, and also desires to produce the biomass at minimum cost. To assist in the accomplishment of the mutual objectives of both parties, this chapter will discuss major logistics and machine systems issues starting from the farmgate to the receiving facilities at a biorefinery. Constraints in this biomass supply chain will also be discussed. The impact of different harvest scenarios for herbaceous biomass harvest will be shown. Logistics systems have been designed for many agricultural and forest products industries. Thus, it is wise to use the lessons learned in these commercial examples. Each of these industries faces a given set of constraints (length of harvest season, density of feedstock production within a given radius, bulk density of raw material, various storage options, quality changes during storage, etc.), and the logistics system was designed accordingly. Typically, none of these systems can be adopted in its entirety for a bioenergy plant at a specific location, but the key principles in their design are directly applicable. Commercial examples will be used in this chapter to interpret these principles.