Belowground biomass

As previously mentioned, fine root turnover might be the most important pathway of C sequestration in forest ecosystems. Therefore, it is crucial to study root dynamics and turnover in the context of forest management. Our case study confirms that on average, fine root biomass (FRB) decreased with increasing stand age in HF (R = -0.28; p<0.01) but remained constant in CS. This basically reflects aboveground biomass dynamics where the CS system has a relatively balanced stand structure throughout rotational cycles. It is partly a consequence of shorter rotation cycles and therefore retains the aggradation phase [49]. Another reason lays in the continuous growing stock, since standards are kept on site during and after understorey harvest. Considering a finer resolution one may observe dynamic changes in FRB corresponding to stand development stages. FRB increased after stand reorganization, culminated at an age of 31 (CS) and 50 years (HF) and subsequently decreased as stands aged. In accordance with increasing aboveground biomass stores, coarse root C pools increased with age in HF (R= 0.87; p= 0.53), accounting for 8.0 (0.9) % of total C pool and no trend was observed in CS, where coarse root C pools accounted for 7.8 (1.0) % respectively [13]. Although on average HF has lower total belowground biomass stores (7 % less), the FRB is 32% higher as compared to CS. The root-to-shoot ratio indicates higher belowground relative to aboveground biomass accumulation rates in early successional phases. A direct comparison between HF and CS reveals two major differences:

1. In comparison with HF, there was no initial major decrease of the ratio observed in CS

2. The ratio is always lower in CS than in HF

These differences may be due to significant aboveground biomass stocks represented by standards in CS and therefore comparatively low ratios, even in the stand reorganization phase. Consequently, root/shoot ratios are in equilibrium throughout the rotation period. More favourable soil conditions in CS may lead to lower ratios throughout stand development. It was shown that drought and limited soil resources (nutrient) availability promote FRB production [50, 51]. The effect of standards harvesting was observed in our case study as a slightly higher ratio in the 15-year old stand compared with the one-year old stand in CS. On average, the root C pool represented 28.0(3.0)% of total phytomass C stores when excluding the youngest HF stand where the root C pool was 1.6 times as high as aboveground phytomass stores [13].

image18

Figure 3. Root/shoot ratios of High forest system (HF) and Coppice with standards system (CS). The solid lines represent a hypothetic pattern. Source: Bruckman et al. [13].