Coppice with standards and high forest management in Austria

High forest (HF) and Coppice with standards (CS) are the most common silvicultural management systems for broadleaved forest ecosystems in northeastern Austria. These systems have evolved over a long period of traditional management and they are mainly determined by environmental conditions and economic considerations. However, these systems were locally adapted over time, resulting in a range of intermediate types. Divergent silvicultural structures with diffuse standards are the consequence and are very common in Austria [39].

Quercus dominated high forests aim at producing quality timber with a diameter of at least 30 cm (diameter at breast height (DBH)). Rotation periods are approximately 120 years, followed by shelterwood cuts and natural regeneration. It is one of the most common systems in central Europe and suitable for most species. The rotation period is set according to the dominant or most economically significant species and it is usually shorter for coniferous species (~100 years). The most important difference in comparison to other management systems is the type of regeneration, which in the case of high forest is entirely generative. Generative regeneration may be introduced by shelterwood cuts or similar silvicultural systems, or by planting, while natural regeneration is usually preferred as a consequence of costs and genetic compatibility issues (e. g. climate) and uncertain provenance. Shelterwood cuts promote generative regeneration via seeds when the canopy is opened. Individuals with high quality (i. e. straight stem) may be chosen to initiate regeneration, which implies genetic selection to a certain extent. Thinning is typically performed 4 times, at 30, 50, 70 and 90 years. The main silvicultural goal is to produce straight logs with a minimum number and size of ingrown branches, as a raw material for woodwork, veneer and other similar purposes. Thinning operations and harvesting residues provide biomass for energetic utilization. Individual generative stems might be considered as a source of woody biomass for energetic utilization as well, if they do not meet requirements in terms of quality.

Quercus-Carpinus coppice with standards is a woodland management system to produce biomass for energetic utilization. These forests were once the main source of thermal energy when producing fuelwood for direct burning or charcoal production. There is evidence of coppice management dating back approximately 400 years in this region of Austria [40]. The management goals shifted during this period, depending on the demands of the landowners. CS is a relatively flexible system regarding supply of different qualities and quantities of wood. Among coppice, some trees are left in four age-classes to grow as larger size timber, called "standards". While standards provide a certain share of higher quality logs for trades, coppice provides fuelwood. Standards typically result from genetic regeneration. This multi-aged traditional system supports sustainable production of timber and non-timber forest products, while enhancing ecosystem diversity and wildlife habitat

[41] , which is also highlighted in the similar Japanese management system of Satoyama [33]. The rotation period for coppice (understorey) is typically 30 years [39, 42], hence holding a middle position between planted short rotation woody crops (SRWC) [35] and traditional high forests. The system is characterized by cyclic vegetative and generative regeneration

[42] . Sprouting occurs rapidly after harvest and standards provide shade and are a source for seeds as backup if sprouting is not successful. Individual standards are managed in four age classes (30-60, 60-90, 90-120, and 120+ years) and harvested depending on certain criteria (e. g. market value, tree health, stand density). However, their importance began to cease with the introduction of fossil sources of energy during the onset industrialization, but significantly after 1960 [39]. Declining fuelwood demands led to a reduced intensity of understorey harvests (coppicing) and a shift towards longer rotation periods. This trend is especially distinct on fertile sites, while coppice was tendentially retained on sites with lower fertility.

The parent material of soils in our study region consists of gravel, sand and silt built up during the Pannonium (between 7.2 and 11.6 Ma before present) resulting from early formation of the Danube River. Consequently, a variety of soils can be found, e. g. Cambisols, Luvisols, Chernozems and even Stagnosols. Younger aeolian deposits of loess (Pleistocene) led to periglacial formation of Chernozems. The soils of our chronosequence series are classified as Eutric Cambisol with a considerable amount of coarse material (< 40% volume) in HF and sandy clay loam texture and both Haplic and Vermic Chernozems with loamy texture in CS [43]. Soils with lower fertility are derived from gravel and sand of the Danube River development, while Chernozems are derived from loess. The region receives approximately 500 mm of precipitation annually, with irregular periods of drought during summer. The water holding capacity of soils with a considerable amount of coarse material is lower as compared to loess derived soils, hence vegetative regeneration has the advantage of a fully functional root system at all times, supporting successful regeneration even in periods of drought. Generative regeneration might be obstructed under such conditions as a consequence of drying topsoil horizons. In our case study, we were able to include an outgrown coppice plot (i. e. a coppice with standards system that was not harvested at the theoretical end of the rotation period) aged 50 years to widen the scope for temporal dynamics. Irregular harvesting of standards and rotation periods up to 50 years (outgrown coppice) led to divergent silvicultural structures with diffuse standards [39], as previously mentioned. The plots were established during the summer of 2007 as permanent sample plots for aboveground biomass monitoring and are part of a framework to investigate biomass and carbon pools in this region [44].