Effect of SDS in biomass hydrolysates solution

SDS is a popular surfactant used in PHA recovery to disrupt the cells or remove a small amount of hydrophobic impurities from PHB granules [30, 31]. The purity of PHB granules can be increased from 96.4% to above 99% when a small amount of SDS was added in the base treatment. The surfactant left in the base solution, however, may have an adverse effect when the cell debris is reused in microbial PHB fermentation. An acid-base biomass hydrolysates solution containing 48.5 g/L of soluble solids and SDS were added into a glucose medium. The cell debris concentration was kept at 1.94 g/L, and SDS concentration was increased from 0.2 to 0.8 g/L with SDS. Controls without biomass hydrolysates and SDS were run in parallel. Table 2 gives the results of cell growth and PHA formation at different surfactant levels at 24 and 48 hours, respectively.

Biomass

SDS

24 hours

48 hours

hydrolysates

(g/L)

Cell mass

PHB

Cell mass

PHB

(g/L)

(g/L)

(wt%)

(g/L)

(wt%)

0

0

2.08 ± 0.02

36.8 ± 1.1

2.7 ± 0.02

44.4 ± 0.6

1.94

0.2

3.69 ± 0.06

49.7 ± 2.1

4.99 ± 0.04

60.6 ± 1.1

1.94

0.4

3.27 ± 0.05

39.6 ± 1.2

4.58 ± 0.04

53.8 ± 0.8

1.94

0.6

2.70 ± 0.04

33.9 ± 1.5

3.51 ± 0.03

50.3 ± 0.7

1.94

0.8

2.59 ± 0.04

17.8 ± 1.3

3.54 ± 0.03

25.8 ± 1.2

Note: flask cultures were maintained at 30 oC and 200 rpm in a rotary incubator.

Table 2. Effect of surfactant SDS and biomass hydrolysates on cell growth and PHB formation

Compared with the controls of no biomass hydrolysates and surfactant, all the cultures containing the acid-base hydrolysates exhibited better cell growth. Particularly, the increase of cell concentration from 24 hours to 48 hours was the new cell mass formed in 24 hours from glucose and cell debris in the presence of SDS. The formation of PHB, however, was deteriorated at high SDS concentrations (0.6-0.8 g/L). At a low or moderate SDS concentrations (0.2-0.4 g/L), the positive effect from biomass hydrolysates was much higher than the negative effect of surfactant. The PHB concentrations, after 48 hours cultivation, were 2.4 to 3 g/l, in comparison with 1.2 g/L of the control. The results in Table 2 indicate that the dosage of SDS in PHA recovery should be controlled according to the amount of residual microbial biomass generated. The mass ratio of SDS to biomass hydrolysates should be less than 20% w/w or better at 10% w/w. In a typical PHB recovery process as shown in Figure 1, the amount of SDS used should be less than 2.9 g for 10% of acid-base cell debris or 5.8 g for 20% of acid-base cell debris. The consumption of SDS is therefore 4-8 % of PHB resin produced. It is much lower than the SDS dosages used in the conventional separations [30, 31].

2. Conclusion

Residual microbial biomass is an inevitable waste generated in downstream recovery of polyhydroxyalkanoates from microbial cells. With a separation technology based on sequential dissolution of no-PHB cell mass in aqueous solutions, the cell mass separated from the PHB-granules is decomposed and hydrolyzed into small molecule hydrolysates that can be assimilated by microbial cells as nutrients and/or carbon source. A type of biomass hydrolysates generated from continuing treatment in acid and base solutions exhibits the best nutrient value for cell growth and PHA formation. The acid-base hydrolysates contains two major water-soluble components derived from the cell proteins and lipids, respectively. When PHB-producing cells are fed with the hydrolysates in a glucose mineral solution, the cells grow faster and form more biopolyester in comparison with the controls that do not contain the hydrolysates. The glucose-based yields of cell mass and PHA bioplastics are significantly improved. SDS is an efficient surfactant to remove the small amount of hydrophobic residues for high PHB purity, but also a potential inhibitor to microbial PHA formation. When the amount of surfactant is less than 20% of an acid-base biomass hydrolysates, its negative effect is overwhelmed by the nutritional value of hydrolysates. Under these conditions, it is highly possible to reuse most of the residual biomass discharged from PHB recovery in the next microbial PHB fermentation. It therefore eliminates a waste stream from bioplastics production and saves the nutrients with improved PHA productivity and yield.