. Comparison of three types of cell debris

In the process of PHB recovery (Figure 1), three types of biomass hydrolysates may be generated, depending on operations: acid, base, and acid-base biomass hydrolysates. They may have different nutrient values or inhibitory effects on cell growth and PHB synthesis. Solutions of three types of biomass hydrolysates were added into a glucose medium for pre­determined concentrations of cell debris. Controls without hydrolysates were run in parallel. The ratios of cell densities (g/L) to the controls were compared after 48 hours cultivation as shown in Figure 8. The nutritional value of acid hydrolysates in cell growth is similar to that of base hydrolysates. The nutrient value of acid-base hydrolysates, however, is significantly higher than those of hydrolysates from individual treatment.

Подпись: ш О Ш > 1 Ш o' Подпись: Figure 8. Comparison of three types of biomass hydrolysates (acid, base, and acid-base) on cell growth in a glucose mineral medium. The relative cell gain is the ratio of cell density to the controls.image123

0

0 1 2 3 4 5 6

Cell debris (g/L)

Based on an average cell yield (Yx/s = 0.45) of PHB fermentation on glucose [29], 45 kg of cell mass containing 70 wt% of PHB is generated from 100 kg of glucose consumed. A
downstream recovery and purification as shown in Figure 1 can generate 31 kg PHB resin and 13 kg acid-base hydrolysis of residual microbial biomass. It is assumed that the acid hydrolysates are not separated, but hydrolyzed sequentially in the base treatment and discharged with the base hydrolysates together. If this amount of residual biomass is reused in next PHB fermentation, the percentage of biomass hydrolysates to glucose is 13% at maximum (13 kg for 100 kg glucose), a moderate load of biomass hydrolysates (Table 1). In real fermentations, more glucose is often added because of the residual glucose in the spent medium. This quick calculation indicates that most of residual biomass discharged from downstream separations can be reused in the next PHA fermentation. In addition to the elimination of a waste stream, the productivity and yields of PHA fermentation can also be significantly improved.