Utilization of acid hydrolysates in PHB biosynthesis

An acid hydrolysates solution containing 38 g/L of soluble solids was added into a glucose medium to give a predetermined percentage of residual biomass to glucose at 0, 10, 20 and 25% of sugar, respectively. The initial glucose concentration was controlled at a constant level of 9.6 g/L. The flask cultures of no biomass hydrolysates were run in parallel as controls. As shown in Figure 7, the acid biomass hydrolysates were beneficial to both cell growth and PHA formation. Because the residual biomass might also contain some insoluble solids and PHB granules lost in PHB recovery, both cell density and PHB concentration were compared at 24 hours and 48 hours to show the net gains. The benefits of biomass hydrolysates were statistically significant based on the deviations of duplicates.

The acid hydrolysates might have two positive effects on microbial PHA formation. First, the hydrolysates promoted cell activity on glucose utilization, giving higher cell densities than the controls in the first 24 hours. This nutritional effect was similar to those of organic nutrients such as yeast extract and peptone, which are widely used in microbial cultures to provide nutrients and growth factors to the cells. A fast cell growth can reduce the cultivation time, resulting in a high PHB productivity. Second, the biomass hydrolysates might also be used as an extra carbon source to generate more cell mass than the controls in 48 hours. This carbon source effect, however, might play a minor role because the cell density did not increase with cell debris load. In fact, too much acid hydrolysates deteriorated the gains as shown in Figure 7. The reason is not clear yet. A load of acid biomass hydrolysates to glucose from 10 to 20 wt% seems appropriate for both cell growth and PHB formation.