Crop Rotation Biomass and Effects on Sugarcane Yield in Brazil

Edmilson Jose Ambrosano, Heitor Cantarella, Glaucia Maria Bovi Ambrosano, Eliana Aparecida Schammas, Fabio Luis Ferreira Dias, Fabricio Rossi,

Paulo Cesar Ocheuze Trivelin, Takashi Muraoka, Raquel Castellucci Caruso Sachs, Rozario Azcon and Juliana Rolim Salome Teramoto

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53825

1. Introduction

Healthy soils are vital to a sustainable environment. They store carbon, produce food and timber, filter water and support wildlife and the urban and rural landscapes. They also preserve records of ecological and cultural past. However, there are increasing signs that the condition of soils has been neglected and that soil loss and damage may not be recoverable [1]. Soil is a vital and largely non-renewable resource increasingly under pressure. The importance of soil protection is recognized internationally.

In order to perform its many functions, it is necessary to maintain soil condition. However, there is evidence that soil may be increasingly threatened by a range of human activities, which may degrade it. The final phase of the degradation process is land desertification when soil loses its capacity to carry out its functions. Among the threats to soil are erosion, a decline in organic matter, local and diffuse contamination, sealing, compaction, a decline in bio-diversity and salinisation.

The authors in [2] made the interesting observation when study of nine great groups of New Zealand soils, that although many soil quality indicators will be different between soil types differing in clay and organic mater contents, land use had an overriding effect on soil quality: agricultural systems could be clearly differentiated from managed and natural forests, and grass land and arable land were also clearly separated.

Regular additions of organic matter improve soil structure, enhance water and nutrient holding capacity, protect soil from erosion and compaction, and support a healthy community of soil organisms. Practices that increase organic matter include: leaving crop

residues in the field, choosing crop rotations that include high residue plants, using optimal nutrient and water management practices to grow healthy plants with large amounts of roots and residue, applying manure or compost, using low or no tillage systems, using sod — based rotations, growing perennial forage crops, mulching, and growing cover crops as green manure [3].

Addition to being a frequent addition of organic matter should be diversified. Diversity cropping systems are beneficial for several reasons. Each plant contributes a unique root structure and type of residue to the soil. A diversity of soil organisms can help control pest populations, and a diversity of cultural practices can reduce weed and disease pressures. Diversity across the landscape can be increased by using buffer strips, small fields, or contour strip cropping. Diversity over time can be increased by using long crop rotations. Changing vegetation across the landscape or over time not only increases plant diversity, but also the types of insects, microorganisms, and wildlife that live on your farm [3]. In addition a dedicated management approach is needed to maintain or increase the soil organic matter content.

The incorporation of plant materials to soils, with the objective of maintaining or improving fertility for the subsequent crop is known as green manuring. The inclusion of a legume fallow within a sugarcane cropping cycle is practiced to reduce populations of detrimental soil organisms [5, 6], provide nitrogen (N) through biological fixation [7,8] and for weed suppression [9, 10].

Interest in the use of green manure’s biomass has revived because of their role in improving soil quality and their beneficial N and non-N rotation effects [11]. Because of its nitrogen fixation potential, legumes represent an alternative for supplying nutrients, substituting or complementing mineral fertilization in cropping systems involving green manuring. This practice causes changes in soil physical, chemical and biological characteristics, bringing benefits to the subsequent crop both in small-scale cropping systems and in larger commercial areas such as those grown with sugarcane [12].

The area cropped with sugarcane (Saccharum spp.) in Brazil shows rapid expansion, with most of the increase for ethanol production. The area cultivated with sugarcane is now 9.6 Mha, with an increase of 5 Mha from 2000 and over 8.6 Mha of fresh sugarcane harvested per year [13]. Sugarcane crops in Brazil are replanted every five to ten years. In southeastern Brazil, the interval between the last sugarcane harvest and the new plantings occurs during the spring-summer season, under high temperature and heavy rainfall (almost 1,000 mm in six months) [14].

Green manure fertilization of the soil with legumes has been recommended before a sugarcane field is replanted. This practice does not imply on losing the cropping season, does not interfere with sugarcane germination, and provides increases in sugarcane and sugar yield, at least during two consecutive cuts [12]. Additionally, it protects the soil against erosion, prevents weed spreading and reduces nematode populations [15, 16]. Legumes usually accumulate large quantities of N and K, the nutrients which are taken up in the highest amounts by the sugarcane plants.

Residue incorporation studies of legumes using 15N label indicate that 10 to 34% of the legume N can be recovered in the subsequent rye or wheat crop, 42% in rice, 24% recovery from Velvet bean by corn crop, around 15% of N recovery from sunn hemp by corn plants in no-till system, 30% by maize [51],and 5% of N recovery from sunn hemp by sugarcane [12], and ranged from 19 to 21% when the recovery was observed from sunn hemp by two sugarcane harvest [17].

The authors suggested that legume residue decomposition provided long-term supply of N for the subsequent crops, by not supplying the nutrient as an immediate source.

There are many benefits to the sugarcane crop of leguminous plants rown in rotation in sugarcane renovation areas; these include the recycling of nutrients taken up from deep soil layers by the rotational crop, which may prevent or decrease leaching losses, and the addition of N from biological fixation. Leguminous plants can accumulate over 5 t ha-1 of dry mass during a short period of time during the summer and take up large amounts of N and K. Most of this N comes from the association of legumes with rhizobia. In this way crop rotation with legumes can replace partially or totally N mineral fertilization of sugarcane, at least for the first ratoon [18, 12].

Another important microbial association is that of mycorrhizal fungi and plant roots. These fungi are present in over 80% of plant species [19]. In contrast with the large diversity of plants, which includes sugarcane, that have their roots colonized by mycorrhizas, only 150 fungi species are responsible for that colonization [19]. A crop whose roots are colonized by mycorrhizal fungi can raise the soil mycorrhizal potential which can benefit plants which are responsive to this fungi association and that are cultivated in sequence. This could be particularly useful for the nutritional management of crops in low nutrient, low input — output systems of production [20].

This study evaluated biomass production, N content, characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane and their effect in the soil. Their effect on stalk and sugar yield and nematode that occur on sugarcane cv. IAC 87-3396 grown subsequently was also studied. The economic balance considered the costs of production and revenues of the rotational crops as well as three or five harvests of sugarcane was too evaluated.