Planting & cutting quality

One of the large advantages of most willows is that they can be propagated vegetatively by means of cuttings. Traditionally, cuttings of about 20 cm in length were produced manually from 1-year old long rods. These cuttings were taken during the winter period, when willow is dormant, and could be stored in a fridge until planting in spring. During commercialization of the growing system in Sweden in the late 1980s, manual planting was replaced by machine planting. Establishment costs for short rotation willow coppice decreased substantially during the initial phase of commercialization in Sweden [45]. This was mainly achieved by mechanisation of planting, employing equipment which, in one process, cuts willow rods (1.8 — 2.4 m. long) into cuttings and then plants them (Figure 1). These cuttings are around 18 to 20 cm long, and the cutting is pressed down into the prepared soil so that only 1-2 cm protrudes above soil surface. This is believed to provide the cutting with good soil contact, thereby minimizing the risk of drying out [46]. Field storage of cuttings can result in water loss and reduce shoot survival and biomass production. This problem has partly been overcome by the use of entire shoots, which are considered to be more resistant to desiccation than cuttings [47]. Volk et al. [48] also pointed to risks of desiccation and showed that a prolonged time of field storage after cold storage may lead to a decrease in survival and growth rate.

Stage

Description

1

No sign of bud swelling, the tip of the bud is tightly pressed to the shoot.

2

The tip of the bud starts to bend from the stem, bud scales are starting to open and the length of the shoot tip is 1-4 mm.

3

The shoot tip is 5 mm or longer, protruding leaves are put together.

4

New leaves start to bend from each other.

5

One or more new leaves are perpendicular to the shoot axis.

Table 1. Assessment criteria for bud burst stages.

Cutting size (length and diameter) has positive effects on subsequent willow growth. The positive effects of cutting size on growth and survival decline with increasing sizes ([49, 50, 51], and Rossi [52] found that the differences in cutting length with relevance for establishment in practice are to be found between lengths of 10 and 20 cm. Positive effects of cutting size generally are attributed to the size of the carbohydrate pool available for allocation to roots and shoots [53]. The effect of cutting length may also be associated to the ability of longer cuttings to withstand soil desiccation [54]. The phenological development of buds and shoots is affected by cutting size and also by the height above ground from where the cuttings were taken [51]. Using the simple assessment criteria for bud development as described in Table 1, bud development, a few weeks after planting, is a function of the diameter size of the planted cutting (Figure 3). However, cuttings derived from apical positions along shoots display for a given diameter a higher shoot biomass production than cuttings derived from the more basal parts (Figure 4). As willow rods display a taper, the question arises which of the two factors (cutting size or position) is the strongest determinant of shoot biomass production during early establishment.

A further evaluation of produced shoot biomass on the cuttings showed that cutting size by far is the single most important determinant of early biomass production, which led to the recommendation to employ thicker cuttings and to discard the thinner apical parts from long rods. While the introduction of planting machines has increased the speed of planting

and reduced planting costs, ongoing research indicates that planting machines may cause damage to cuttings, especially when planted in compacted soils. Preliminary results by Verwijst et al. [32] and by Edelfeldt et al. [55], suggest that that undamaged cuttings had a better growth performance than visibly damaged cuttings. Planting by machine on hard soil resulted in a relatively large number of cuttings landing on the soils surface. Soil compaction and machine planting interacted with cutting dimensions, the poorer performance of thinner cuttings being more pronounced in compacted soil (Figure 5).

Furthermore, machine planting also increased the relative variation of shoot height (Figure 6) compared to hand prepared and planted cuttings. Consequently, to obtain a faster and more even establishment of willows, Edelfeldt et al. [55] recommend thorough soil cultivation prior to planting, further development of planting machines to minimise damage to cuttings at planting, and the use of cuttings with a diameter of at least 10-11 mm.

Figure 5. Cuttings planted by machine in a hard soil were transformed to a soft soil to isolate the effect of machine planting from other factors. The thinner cuttings were visually damaged and displayed a lower sprouting performance than the thicker ones (Photo: Nils-Erik Nordh).

0 1 2

Treatment

Figure 6. Relative variation (%) and its standard error in plant height for manually planted cuttings (Treatment 0) versus machine planted cuttings in Soft and Hard soil (Treatments 1 and 2, respectively).