Growing systems & population dynamics

Given the huge range in size, growth form and coppice ability in the willow genus, production systems for willow may vary from single-stemmed systems with less than 500 trees ha-1 and a rotation period of over 20 years, to systems which contain over 4*104 plants plant which generate over half a million shoots ha-1 in a one-year coppice cycle. In the remainder of this chapter, we focus on growing systems which are generated from cuttings, at a planting density of 1*104 to 1.5 *104 cuttings ha-1, and treated as a coppice system, undergoing multiple cutting cycles. In Scandinavian conditions, one season may be too short to replenish carbohydrate reserves in willow stubs after harvest, and a one-year harvest cycle may deplete a plantation and compromise its viability [21]. Cutting cycle lengths in Swedish practice have been 3 to 5 years, and with the introduction of faster growing clones, cutting cycle lengths now are being decreased to 2 to 4 years. In commercial practice, a double row system is employed (Figure 1). However, Bergkvist and Ledin [22] showed that planting design could be adjusted, within certain limits without losing yield potential, to the requirements of tractors and machines used in managing the Salix stand.

Figure 1. Machine planting of willow by means of a Woodpecker 601, using long rods and planting three double rows at a time (Photo: Nils-Erik Nordh).

The development of a population of willow stems is constrained by competitive interactions which lead to self-thinning, yield-density effects and to skewed size-frequency distributions of stems [23, 24]. Those effects of competitive interactions need to be accounted for when determining optimal plant spacing and harvest frequency. Especially in dense willow coppice, not only shoot mortality but also extensive stool mortality may occur [25], thereby leading to lasting gaps and production losses [26]. Studies on the long term dynamics of willow coppice have shown that an initial variability in plant size becomes enlarged over time, that self-thinning leads to mortality of the initially smallest stools [27], and that the competitive hierarchy between stools is preserved over harvest [26]. As soil factors are known to be important determinants of willow growth [28, 29, 30, 31], differences in soil at field scale likely underlie the initial size variability between plants. Differences in cutting quality also may cause an initial variability in growth performance between plants (see section 4.2). To be able to detect possible effects of cutting quality and to separate those from soil factors, it is advantageous to perform controlled experiments which allow the relative variation to be attributed to only a few factors. Verwijst et al. [32] compared the relative variation in shoot height of willow populations grown in the field with the relative variation of populations grown in boxes which had a standard soil and were treated as similar as possible with regard to fertilization and irrigation (Figure 2). The controlled experiments
showed a decreased relative variation and enhanced the detection of cutting quality traits with relevance for early establishment success.

Treatment

As willow is a relatively new crop, advances in willow breeding generate a steady increase in potential and attainable yield [33, 34]. This increase in biomass yield is estimated to be 50 to 100% since the 1970s’. This means that spacing, harvest frequency and fertilization have to be adapted to the rapidly evolving new plant material, in order to avoid mortality and ensure a high productivity also during the later cutting cycles. Most of the planted willow stands in Sweden consist of monoclonal stands or blocks of monoclonal units. However, such monoclonal stands are vulnerable to pathogen adaptations [35] and it has been shown that clone mixtures may be effective against the spread of diseases [36]. However, the relative competitive power of willow clones does differ, which means that certain clones may be outcompeted by other ones in mixtures of clones. If a mixture consists of only a few clones and one of the components is attacked by a pathogen, the susceptible clone is likely to be outcompeted by the others, thereby causing gaps, a delayed stand closure and lower productivity in later cutting cycles [37]. Furthermore, as clone-site interactions have been reported for willow, and the performance of clones in mixtures can not be predicted from their performance in pure stands [24], successful clone combinations are expected to be highly site specific.