System in batch and continuous culture

The construction of bioreactors is based on a simple principle: make the pollutants are converted into the substrate (food) of microorganisms, and that these, while feeding and increases its population, decontaminated water. For the construction of a bioreactor is necessary to know the type of microorganisms with which they are going to work and as well as the growth curve characteristic of them [5].

The key factor of a bioreactor is to maintain microorganisms in the growth stage most of the time as possible, i. e. keep the microbial population to its maximum level, to optimize the efficiency of the degradation processes. This is achieved by controlling the environmental conditions (temperature, pH, aeration and nutrient availability) and the flows in and out, so never lack food and do not reach the death phase or endogenous [2, 5].

The teams that are made homogeneous reactions can be of three general types: discontinuous (batch), continuous flow steady and unsteady flow semicontinuous.

Batch reactors are simple to operate and industrially used when small amounts are to treat substance. Continuous reactors are ideal for industrial purposes be treated when large quantities of substance and can achieve good control of product quality. Semicontinuous reactors are more flexible systems, but more difficult to analyze and operate than previous; in them the reaction rate can be controlled with a good strategy at the dosage of the reactants [48].

In a perfect batch reactor there is no entry or exit of reactant. It is further assumed that the reactor is well stirred, i. e. that the composition is the same at all points of the reactor for a given time instant. Since the input and output are zero the material balance is:

All points have the same composition; the volume control to perform the balance is the entire reactor. Evaluating the terms:

dt

And given that: Na = Nao(1 — Xa) results:

dXA

rAV = NA0

dt

Integrating gives the equation for the design for the batch reactor:

If the reaction volume remains constant may be expressed in function of the concentration of reagent Ca = Na / V

This intermittent or batch reactor is characterized by the variation in the reaction’s degree and the properties of the reaction mixture with the lapse of time [49]

A batch reactor has no inflow or outflow reagents of the reaction products while being performed. In almost every batch reactors, the longer that a reactant in the reactor, most of it becomes product to reach equilibrium is exhausted or the reagent [50].

The reactor of the continuous flow type, in which the degree of reaction can vary with respect to the position in the reactor, but not a function of time. Therefore, one of the classifications of the reactors is based on the operation method [49].

Normally, the conversion increases with time that the reagents remain in the reactor. In the case of continuous flow systems, this time usually increases with increasing reactor volume; therefore, the conversion X is a function of reactor volume V [50].

The tubular reactor plug flow (RTFP) is characterized in that the flow is directed, without any element of the exceeding or being mixed with any other element located before or after that, i. e. no mixing in the flow direction (axial direction). As a result, all fluid elements have the same residence time within the reactor [48].

As fluid composition varies along the reactor, material balance must be performed in a differential volume element transverse to the direction of flow.

The recirculation ratio is defined:

r = flow which is recycled
flow out

Raising the design equation for the reactor (within the recycle loop) without expansion

If its considers that there is no expansion or contraction in the reactor, raising the junction of the inlet and the recirculation Vt = (R + 1) Vo and furthermore Ca1 = (Cao + CAf) / (R + 1),

therefore the equation of reactor design is:

Another classification relates to the shape. If a laboratory vessel is equipped with a stirrer efficient, composition and temperature of the reaction mass will tend to be equal in all areas of the reactor. A container in which there is uniformity of properties is called a stirred tank reactor (or well mixed) or STR [48].