Microbial Biomass in Batch and Continuous System

Onofre Monge Amaya, Maria Teresa Certucha Barragan and Francisco Javier Almendariz Tapia

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/55303

1. Introduction

Microorganism is a microscopic organism, commonly used term to describe a cell or more, including viruses [1]. This definition includes all prokaryotes, as the eukaryotic unicellular: protozoa, algae and fungi. Bacteria are an extremely diverse group of organisms with extensive variation of morphological, ecological and physiological, which due to their diversity, are regularly found in heterogeneous communities [2].

The microorganisms are widely used in the biological treatment of waste solids and liquids [3]. Importantly, the microorganisms used in biological treatments as a partnership a community or consortium [2].

Nowadays there is a current increasingly important in the sense of using microorganisms, especially bacteria, algae and fungi, for decontamination and to help recovery from natural environments and for treating municipal or industrial effluents. It is estimated that the best microorganisms for the removal of toxins present in a place, are initially isolated in their own area where they have been naturally selected, although in a second genetic manipulation of these can significantly strengthen the capacity of microorganisms culture collections and isolates from the different environments of interest. This is supported by the observation that microorganisms capable of living in a polluted environment, and thus perform vital functions, in cellular metabolism have highly effective devices for decontamination. To know the details of these mechanisms could be exploited to purify the water, such as using bacteria capable of capturing heavy metals on their cell wall [4].

Thus, this rapid advance of science and technological development has allowed decontamination using microorganisms in the water. Using the metabolism of microorganisms has enabled the construction of biological reactors at much lower cost than

© 2013 Almendariz et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

physicochemical, and also the construction of treatment plants mixed system for greater efficiency [5]. Developed countries currently use these biomining processes through the involvement of bacteria such as Acidithiobacillus ferrooxidans.

Some species of Klebsiella and Pseudomonas are capable of degradation of reactive pollutants. It also recognizes the ability of some microorganisms or their enzymes to degrade under certain conditions to cyanide reagent, employed in the leaching of gold and silver recovery [6]. Several studies have shown that the biomass of different species of bacteria, fungi and algae are capable of concentrating metal ions in their structures that are found in aquatic environments [7].

Bioremediation is defined as a natural process, during in which different microorganisms are capable of removing organic and inorganic contaminants in a given environment [8]. In the bioremediation process, there are different objectives to assess; mainly seeks to avoid a long term noxious effects to other organisms as well as natural resources; it seeks to recover the ecological balance that exists in the environment; and finally, it seeks to achieve that the contaminated area, with a subsequent treatment by biological processes, can be reused for recreation or productive purposes [9].

Different types of biological treatment systems are used in the field of environmental engineering. The biochemical reactions leading to the oxidation of organic matter are conducted in reactors that can be classified as aerobic or anaerobic, suspended growth or biofilm, with mechanical or without mechanical mixing, etc. In order to design an appropriate reactor for a given wastewater treatment system, both the microbial kinetics of substrate removal and the fundamental properties of different reactors have to be understood [10].

The use of microorganisms as tools of decontamination is fairly recent. The biggest advances in the field were made after the oil spill of the Exxon Valdez on the coast of Prince William, in Alaska (1990). Since this ecological disaster lot of oil left in the water, sought alternative ways of dealing with pollution.

The scientists who developed the first successful experiences of bioremediation of oil a large scale in Alaska, were based on the premise that all natural ecosystems have organisms capable of metabolizing toxic compounds and xenobiotics, although these are often found in proportions less than 1% microbial community. This premise was fulfilled in Alaska and in almost all cases studied later [5].

Several studies have shown that the biomass of different species of bacteria, fungi and algae are capable of concentrating metal ions in their structures that are found in aquatic environments [7]. Bacteria as the genus Pseudomonas of mining environments have been identified that are resistant to heavy metals such as cadmium (Cd), copper (Cu) and lead (Pb) [11]. Some species of marine microalgae, Staphylococcus saprophyticus and fungi have been reported the biosorption of cadmium, chromium, lead and copper from wastewater [7, 12, 13].

In other studies it is known that microbial strains are able to bioremediate contaminated soils with different metals and organic compounds. It is known that Escherichia coli is able to bioaccumulate cadmium concentrations of 5 mg/L as well as copper and zinc which are taken from the culture medium by a process in which occurs a binding peptides secreted by the bacteria [14]. Other studies reported bacterial consortia isolated from mining effluents that adsorbed copper [15], as well as anaerobic consortia that in continuous system showed high percentages of copper and iron removal [16, 17].

It is well-known that the use of the water drainage basins are the primary sources for anthropogenic unloads; it represents a risk for the human health, particularly the pollution caused by the high concentrations of some heavy metals, such as, zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb) and copper (Cu) [18, 19, 20]. Those metals go through the aquatic environment principally by direct loads of industrial sources, soils and sediments and are distributed in the water, biota, being the mining industry one of the most important source [21, 22, 23]. An example of contamination by heavy metals in water and sediment, it is the San Pedro River basin, one of the most important rivers of the north of Sonora, Mexico. This river has been severely contaminated by the wastewater discharges with high concentration of copper generated during the mining activity of the region. In addition, wastewaters discharges untreated raw sewage coming from the city of Cananea, Sonora [24]; also contribute with the pollution of this source of water. Considering the importance and impact of this problem on the community of Cananea city, different kinds of researches had been developing. In reports the sampling stations in the San Pedro River and the propagation and isolation of the bacteria and the copper biosorption in an aerobic bioreactor. However, it is necessary to make more studies that allow suggesting other alternatives for the treatment of acid mine drainages (AMD), and consequently, reducing the concentration of the heavy metals in the San Pedro River, until acceptable levels according to Mexican regulations (NOM-001])[15).