Multiple molecular distillation for bio-oil separation

Based on the above single distillation experiments, a multiple molecular distillation experiment was carried out to further evaluate the separation characteristics of bio-oil (Guo et al., 2010b). The feed bio-oil, which was pre-treated by centrifugation, filtration, and vacuum distillation, was firstly distilled at 80 °C and 1600 Pa to obtain the distilled fraction 1 (DF-1) and the residual fraction 1 (RF-1). A part of RF-1 was then further distilled at 340 Pa to obtain DF-2 and RF-2 fractions. In the multiple distillation process, the distilled fraction yield of each distillation process was about 26 wt%. The amounts of water in RF-1 and RF-2 were greatly reduced. The RFs from the two processes had higher heating values than the feed bio-oil or DFs. The acid content was 11.37 wt% in the feed bio-oil, while it was 17.36 wt% for DF-1, nearly four times higher than that in RF-1 (4.56 wt%). In the second process, the acid content of RF-2 was further reduced to 1.38 wt%. The content of monophenols in RF-1 was 36.24 wt%, about twice that in DF-1 (18.02 wt%). Sugars showed non-distillable character in the two distillation processes, and no amounts could be detected in the DF.

In order to gain a deeper insight into the bio-oil distillation properties, Guo (Guo et al., 2010b) proposed a separation factor to evaluate the separation characteristics. The separation factors of acetic acid and 1-hydroxy-2-propanone were approximately 0.9, implying that they could be mostly distilled off. 2-Methoxyphenol, phenol, 2(5H)-furanone, and 2-methoxy-4-methylphenol, the separation factors of which ranged from 0.61 to 0.74, proved to be difficult to separate effectively. Higher molecular weight compounds, such as 3-methoxy-1,2-benzenediol, 4-methoxy-1,2-benzenediol, and 1,2-benzenediol, were very difficult to distil, having separation factors close to zero.