Conventional separation technologies

The efficient separation of bio-oil establishes a solid foundation for its upgrading. Currently, conventional methods for bio-oil separation include column chromatography, solvent extraction, and distillation.

1.2.1. Solvent extraction

The solvents for extraction include water, ethyl acetate, paraffins, ethers, ketones, and alkaline solutions. In recent years, some special solvents, such as supercritical CO2, have also been used for extraction or other research. By selecting appropriate solvents for extraction of the desired products, good separation of bio-oil can be achieved.

Some researchers have used non-polar solvents for the primary separation of bio-oil, such as toluene and n-hexane, and then proceeded to extract the solvent-insoluble fraction with water; finally, the water-soluble and water-insoluble fractions were further extracted with diethyl ether and dichloromethane, respectively (Garcia-Perez et al., 2007; Oasmaa et al., 2003). A lot of organic solvents are consumed during the process. Considering the cost of these solvents and the difficulty of the recovery process, the operating costs are unacceptable, which hinders its industrialization.

Supercritical fluid extraction is based on the different dissolving abilities of supercritical solvents under different conditions. Supercritical fluid extraction at low temperatures contributes to preventing undesirable reactions of thermally sensitive components. Researchers usually use CO2 as the supercritical solvent. In a supercritical CO2 extraction, compounds of low polarity (aldehydes, ketones, phenols, etc.) are selectively extracted, while acids and water remain in the residue phase (Cui et al., 2010).

222. Column chromatography

The principle of column chromatography is that substances are separated based on their different adsorption capabilities on a stationary phase. In general, highly polar molecules are easily adsorbed on a stationary phase, while weakly polar molecules are not. Thus, the process of column chromatography involves adsorption, desorption, re-adsorption, and re­desorption. Silica gel is commonly used as the stationary phase, and an eluent is selected according to the polarity of the components. Paraffin eluents, such as hexane and pentane, are used to separate aliphatic compounds. Aromatic compounds are usually eluted with benzene or toluene. Some other polar compounds are obtained by elution with methanol or other polar solvents (Ertas & Alma, 2010; Onay et al., 2006; Putun et al., 1999).