Как выбрать гостиницу для кошек
14 декабря, 2021
1.2. The importance of separation technology
Bio-oil cannot be directly applied as a high-grade fuel because of its inferior properties, such as high water and oxygen contents, acidity, and low heating value. Thus, it is necessary to upgrade bio-oil to produce a high-grade liquid fuel that can be used in engines (Bridgwater, 1996; Czernik & Bridgwater, 2004; Mortensen et al., 2011).
In view of its molecular structure and functional groups, and using existing chemical processes for reference, such as hydrodesulfurization, catalytic cracking, and natural gas steam reforming, several generic bio-oil upgrading technologies have been developed, including hydrogenation, cracking, esterification, emulsification, and steam reforming.
Components with unsaturated bonds, such as aldehydes, ketones, and alkenyl compounds, influence the storage stability of bio-oil, and hydrogenation could be used to improve its overall saturation (Yao et al., 2008). Hydrogenation can achieve a degree of deoxygenation of about 80%, and transform bio-oil into high-quality liquid fuel (Venderbosch et al., 2010; Wildschut et al., 2009). This process requires a high pressure of hydrogen, which increases both the complexity and cost of the operation. Alcohol hydroxyl, carbonyl, and carboxyl groups were easily hydrodeoxygenated, and phenol hydroxyl and ether groups were also reactive, while furans, having a cyclic structure, were more difficult to convert (Furimsky, 2000). After the separation of bio-oil, the components with alcohol hydroxyl, carbonyl, carboxyl, phenol hydroxyl, and ether groups can be efficiently hydrodeoxygenated at a low hydrogen pressure, while the hydrodeoxygenation of more complex components, such as ethers and furans, may be achieved by developing special catalysts.
Catalytic cracking of bio-oil refers to the reaction whereby oxygen is removed in the form of CO, CO2, and H2O, in the presence of a solid acid catalyst, such as zeolite, yielding a hydrocarbon-rich high-grade liquid fuel. In the process of cracking, oxygenated compounds in bio-oil are thought to undergo initial deoxygenation to form light olefins, which are then cyclized to form aromatics or undergo some other reactions to produce hydrocarbons (Adjaye & Bakhshi, 1995a). Since bio-oil has a relatively low H/C ratio, and dehydration is accompanied by the loss of hydrogen, the H/C ratio of the final product is generally low, and carbon deposits with large aromatic structures tend to be formed, which can lead to deactivation of the catalyst (Guo et al., 2009a). The cracking of crude bio-oil is always terminated in a short time, with a coke yield of about 20% (Adjaye & Bakhshi, 1995b; Vitolo et al., 1999). Alcohols, ketones, and carboxylic acids are efficiently converted into aromatic hydrocarbons, while aldehydes tend to condense to form carbon deposits (Gayubo et al., 2004b). Phenols also show low reactivity and coking occurs readily (Gayubo et al., 2004a). Besides, some thermally sensitive compounds, such as pyrolitic lignin, might undergo aggregation to form a precipitate, which would block the reactor and lead to deactivation of the catalyst. Consequently, efforts have been made to avoid this phenomenon by separating these compounds through thermal pre-treatment (Valle et al., 2010). Therefore, to maintain the stability and high performance of the cracking process, it is necessary to obtain fractions suitable for cracking by separation of bio-oil, to achieve the partial conversion of bio-oil into hydrocarbon fuels.
Bio-oil has a high content of carboxylic acids, so catalytic esterification is used to neutralize these acids. Both solid acid and base catalysts display high activity for the conversion of carboxylic acids into the corresponding esters, and the heating value of the upgraded oil is thereby increased markedly (Zhang et al., 2006). Since this method is more suitable for the transformation of carboxylic acids, which constitute a relatively small proportion of crude bio-oil, an ester fuel with a high heating value can be expected to be produced from the esterification of a fraction enriched with carboxylic acids obtained from the separation.
The emulsion fuel obtained from bio-oil and diesel is homogeneous and stable, and can be burned in existing engines. Research on the production of emulsions from crude bio-oil and diesel suggested that the emulsion produced was more stable than crude bio-oil. Subsequent tests of these emulsions in different diesel engines showed that because of the presence of carboxylic acids, the injector nozzle was corroded, and this corrosion was accelerated by the high-velocity turbulent flow in the spray channels (Chiaramonti et al., 2003a; Chiaramonti et al., 2003b). Besides corrosion, the high water content of bio-oil will lower the heating value of the emulsion as a fuel, and some high molecular weight components such as sugar oligomers and pyrolitic lignin will increase the density and reduce the volatility of the emulsion. Thus, it is beneficial to study the emulsification of the separated fractions that contain less water and fewer high molecular weight components.
Catalytic steam reforming of bio-oil is also an important upgrading technology for converting it into hydrogen. Research on the steam reforming of acetic acid and ethanol is now comparatively mature, with high conversion of reactants, hydrogen yields, and stability of the catalysts (Hu & Lu, 2007). However, some oxygenated compounds in bio-oil show inferior reforming behavior. Phenol cannot be completely converted even at a high steam-to-carbon ratio, while m-cresol and glucose not only show low reactivity, but are also easily coked (Constantinou et al., 2009; Hu & Lu, 2009). To improve the reforming process, some further investigations of steam reforming based on other separating methods are needed.
Therefore, it is necessary to combine crude bio-oil utilization with the current upgrading technologies. Taking advantage of efficient bio-oil separation to achieve the enrichment of compounds in the same family or the components that are suitable for the same upgrading method is a significant strategy for the future utilization of high-grade bio-oil.