Combination with CO2 explosion

Carbon dioxide explosion can also be used for lignocellulosic biomass pre-treatment. The method is based on the utilization of CO2 as a supercritical fluid, which refers to a fluid that is in a gaseous form but is compressed at temperatures above its critical point to a liquid like density. Supercritical carbon dioxide has been used as an extraction solvent for non­extractive purposes, due to some advantages such as availability at relatively low cost, non­toxicity, non — flammability, easy recovery after extraction, and environmental friendly [153]. Besides a liquid-like solvating power, supercritical carbon dioxide displays gas-like mass transfer properties [154].

Supercritical pre-treatment conditions can effectively increase substrate digestibility by removing lignin. Addition of co-solvents such ethanol can improve delignification. Supercritical carbon dioxide has been mostly used as an extraction solvent but it is being considered for non-extractive purposes due to its many advantages [155]. CO2 molecules are comparable in size to water and ammonia and they can penetrate in the same way the small pores of lignocelluloses. This mechanism is facilitated by high pressure. After CO2 explosive, pressure released, disruption of cellulose and hemicellulose structure is observed and consequently accessible surface area of the substrate to enzymatic attack increases [141].

2.2.2. Combination with ammonia fibre explosion (AFEX) time, and then the pressure is suddenly released, resulting in a rapid expansion of the ammonia gas that causes swelling and physical disruption of LCF fibres and partial decrystallization of cellulose. This swift reduction of pressure opens up the structure of lignocellulosic biomass leading to increased digestibility of biomass.

One of the main advantages of AFEX pre-treatment is no formation of some types of inhibitory by-products, which are produced during the other pre-treatment methods, such as furans in steam explosion pre-treatment.

AFEX has been studied for decreasing cellulose crystallinity and disrupt lignin — carbohydrates linkages [156]. Ammonia recovery and recycle is feasible despite of its high volatility [157] but the associated complexity and costs of ammonia recovery may be significant regarding industrial scale using of the AFEX pre-treatment [34, 158].

There are some disadvantages in using the AFEX process compared to some other processes. AFEX simultaneously de-lignify and solubilize some hemicellulose while decrystallizing cellulose, but does not significantly solubilize hemicellulose as acid and acid — catalyzed steam-explosion pre-treatments [159-161]. The AFEX produces only a pre-treated solid fraction, while steam explosion produces a slurry that can be separated in a solid and a liquid fractions [15]. Furthermore, ammonia must be recycled after the pre-treatment to reduce the cost and protect the environment [106, 158].