Liquid hot water (LHW) fractionation

Liquid hot water fractionation does not employ any catalyst or chemicals. Pressure is utilized to maintain water in the liquid state at elevated temperatures (160-240 °C) and provoke alterations in the structure of the lignocelluloses [131-133]. LCF in LHW undergoes high temperature cooking in water with high pressure. LHW pre-treatment has been reported to have the potential to enhance cellulose digestibility, sugar extraction, and pentose recovery, with the advantage of producing hydrolysates containing little or no inhibitor of sugar fermentation [134].

Water is an abundant, non-toxic, environmentally benign and inexpensive solvent. LHW is the part range of sub-critical water that near its critical point (374 °С, 22.1 MPa), Sub-critical water (SCW) possesses marvellous properties which are very different from that of ambient liquid water [135-138]. In SCW, dielectric constant, surface tension, and viscosity decrease dramatically with increasing temperature, which enhances the solubility of organic compounds. Sub-critical water is more like non-polar organic solvent (similar with acetone), thus it can substitute for some of organic solvents, and become a clean medium for chemical reactions. SCW is a tunable reaction medium for conducting ionic/free radical reactions, and an effective medium for energy and mass transfer. The ionic product of SCW is larger by three orders of magnitude than that of ambient water, which means concentrations of hydrogen and hydroxide ions are much higher. Therefore, in addition to the increase in kinetic rates with temperature, both acid and base catalyses by water are enhanced in SCW, which can be a solvent or reactant participated in chemical reaction. And without any pollution, hydrolysis in SCW is an environment-friendly technology

The objective of the liquid hot water is to solubilise mainly the hemicellulose to make the cellulose more accessible and to avoid the formation of inhibitors. By keeping the pH between 4 and 7 the autocatalytic formation of fermentation inhibitors are avoided during the fractionation [34, 139, 140]. If catalytic degradation of sugars occurs it results in a series of reactions that are difficult to control and result in undesirable side products.

The slurry generated after pre-treatment can be filtered to obtain two fractions: one solid cellulose-enriched fraction and a liquid fraction rich in hemicellulose derived sugars [34]. Lignin is partially depolymerised and solubilised as well during hot water fractionation but complete delignification is not possible using hot water alone, because of the re­condensation of soluble components originating from lignin.

Water under high pressure can penetrate into the LCF, hydrate cellulose, and remove hemicellulose and part of lignin. The major advantages are no addition of chemicals and no requirement of corrosion-resistant materials for hydrolysis reactors in this process. Liquid hot water pre-treatments are attractive from no catalyst requirement and low-corrosion potential. Liquid hot water has the major advantage that the solubilised hemicellulose and lignin products are present in lower concentrations, due to higher water input and subsequently concentration of degradation products like furfural and the condensation and precipitation of lignin compounds is reduced. However, water demanding in the process and energetic requirement are higher and it is not developed at commercial scale [141].