Butanol

Butanol is another attention attracted alternative fuel to gasoline besides ethanol because of its properties with respect to gasoline blending, distribution and refuelling, and end use in existing vehicles. For instance, butanol has relatively high energy content which is 30% higher than ethanol and is closer to gasoline. Additionally, butanol has low vapor pressure, low sensitivity to water and it is less volatile, and less flammable when compared with other liquid fuels [63]. Therefore butanol can be handled conventionally in the existing petroleum infrastructure, including transport via pipeline. It also can be blended, at any ratio, with either gasoline or diesel fuel at existing refineries, thus avoiding the capital investment associated with plant revamps and the need for major operational, etc.

Similarly to bioethanol, butanol can be biochemically produced from both agricultural crops and lignocellulosic biomass using Clostridium acetobutylicum or C. beijerinckii to ferment lignocellulosic hydrolysate sugars (hexoses and pentoses) to butanol. Traditionally, sugar — rich agricultural crops such as corn, cane molasses and whey permeate have been successfully used as feedstocks in the commercial production of butanol for decades. However, the cost for these food crops rises significantly nowadays; therefore, lignocellulosic biomass becomes more popular as substrates for butanol production. In similar ways of producing bioethanol, pre-treatments are required prior to enzymatic hydrolysis (using cellulase and cellobiose). However, one of technology challenges is the inhibition caused by by-products in pre-treatments such as furfural, HMF, acetic acid, and ferulic acid generated in dilute acid pre-treatments etc. Among these by-products, ferulic and p-coumaric acids were found can significantly inhibit fermentation but furfural and HMW were surprisingly stimulating to the cell culture [64].

The resulted lignocellulosic hydrolysate is then fermented by microorganisms via Acetone — butanol-ethanol (ABE) fermentation (Figure 4). The main challenge in the ABE fermentation is the product butanol itself is toxic to the fermenting microorganisms. In order to overcome this drawback, focused research efforts are to (1) improve the fermentation strategies to minimise the level of inhibitors accumulated such as simultaneously removing butanol and (2) to develop or genetically improve butanol — producing cultures.

However, biobutanol has several potential shortcomings. It is more toxic to humans and animals in the short term than ethanol or gasoline (although some components of gasoline, such as benzene, are more toxic and/or carcinogenic). And it is not clear whether butanol will degrade the materials commonly used in automobiles that can come into contact with motor fuels; building evidence suggests that it will not cause problems, but there has been no definitive testing on the wide range of potentially affected polymers and metals [65].

Figure 4. Phases of ABE fermentation for producing butanol

Additionally, butanol is reported cannot deliver a better economic feasibility and a more sustainable environmental performance when compared with bioethanol under the current level of technology [66]. The relatively low yield of solvents out of glucose (mixture of acetone, ethanol and butanol), which is in the range of 33% — 45% (wt), is the main cause for the high cost of butanol. This economic study argued that butanol perhaps can be sold as chemicals rather than transport fuel unless the technology would be improved to make butanol production economically competitive with bioethanol.