Как выбрать гостиницу для кошек
14 декабря, 2021
At present, much focus is on the development of methods to produce higher recovery yield bioethanol from lignocellulosic biomass. This can be done through two methods; (1) use of pre-treatment to increase the readiness of lignocellulosic biomass for hydrolysis. (2) increase the conversion yield of lignocellulosic biomass into bioethanol through simultaneous fermentation of glucose and xylose into bioethanol.
As mentioned, one barrier to the production of bioethanol from biomass is that the sugars necessary for fermentation are trapped inside the lignocellulosic biomass. Lignocellulosic biomass has evolved to resist degradation and to confer hydrolytic stability and structural robustness to the cell walls of the plants. This robustness is attributable to the crosslinking between the polysaccharides (cellulose and hemicellulose) and the lignin via ester and ether linkages. Ester linkages arise between oxidized sugars, the uronic acids, and the phenols and phenylpropanols functionalities of the lignin. The cellulose fraction can be only hydrolysed to glucose after a pre-treatment aiming at hydrolytic cleavage of its partially crystalline structure. A number of pre-treatment methods are now available — steam explosion, dilute acid pre-treatment [31] and hydrothermal treatment [32]. Hydrothermal treatment prevent the degradation of cellulose content inside the lignocellulosic biomass during pre-treatment because hydrothermal can be performed without addition of chemicals and oxygen to the lignocellulosic biomass. Hydrothermal treatment involves two process where during the first process, lignocelluosic biomass was soaked in water at 80 °C to soften it before being treated in the second process with higher temperature at 190-200°C.
Another way to increase the recovery yield of bioethanol from lignocellulosic biomass is to convert every bit of biomass into bioethanol. This means using all the available sugars from cellulose and hemicelluose and fermented into bioethanol. Lignocellulosic biomass have high percentage of pentoses in the hemicellulose, such as xylose, or wood sugar, arabinose, mannose, glucose and galactose with majority sugar in hemicelluloses is xylose which account more than 90% present. Unlike glucose, xylose is difficult to ferment. This meant that as much as 25% of the sugars in biomass were out of bounds as far as ethanol production was concerned. At the moment, research shows that steam explosion or mild acid treatment performed under adequate temperature and time of incubation, render soluble the biomass hemicellulose part with the formation of oligomers and C5 sugars that are easily extracted from the biomass. The C5 sugar stream can be individually fermented to ethanol by microorganisms such as E. coli, Pichia stipitis and Pachysolen, that are able to metabolise xylose, or be used as carbon source in a variety of other fermentative processes [33].