Bioethanol conversion yield

Commercial production of bioethanol deals with the biotechnological production from different feedstock. The selection of the most appropriate feedstock for ethanol production strongly depends on the local conditions. Due to the agro-ecological conditions, North American and European countries have based their ethanol industry on the starchy materials. In Brazil, sugarcane is the main feedstock for bioethanol production. World production of ethanol (all grades) in 2010 was nearly 70 billion litres (IEA, 2010). Although many countries produce ethanol from a variety of feedstocks, Brazil and the United States are the major producers of ethanol in the world, each accounting for approximately 35 percent of global production [4].

The theoretical yield of ethanol from sucrose is 163 gallons of ethanol per tonne of sucrose. Factoring in maximum obtainable yield and realistic plant operations, the expected actual recovery would be about 141 gallons per tonne of sucrose [5]. Using [6],[7] and [8] reports, average sugar recovery rates, one tonne of sugarcane would be expected to yield 70 L of ethanol and one tonne of sugar beets would be expected to yield 100 L of ethanol. One tonne of molasses, a byproduct of sugarcane and sugar beet processing, would yield about 260 L of ethanol. Corn had the highest ethanol yield per tonne feedstock (403 L/t), followed by wheat with 350 L/t [9]. A lower ethanol yield per tonne of feedstock was obtained for cassava compared to corn. The ethanol yield from starchy materials were basically higher than sugar containing material because of the higher amount of fermentable sugars (glucose) that may be released from the original starchy material [10].

The conversion of sugar containing material into bioethanol is easier compared to starchy materials and lignocellulosic biomass because previous hydrolysis of the feedstock is not required since this disaccharide can be broken down directly by the yeast cells [11]. Therefore, using raw sugar as a feedstock, one tonne would yield 500 L of ethanol while refined sugar would yield 530 L ethanol. Molasses, from either sugarcane or sugar beets, was found to be the most cost competitive feedstock. The table below summarizes the estimated ethanol production yield and conversion efficiency from starchy and sugar containing materials from all over the world, as well as research ethanol yield produced from lignocellulosic biomasses.

Bioethanol is currently produced from raw materials such as sugar cane, or beet or starch from cereals. Recent interest was on the low cost and abundant availability of lignocellulosic biomass as the potential feedstock for bioethanol production. Lignocellulosic biomass which includes agricultural and forestry residues and waste materials, has the advantage of providing a greater choice of potential feedstock that does not conflict with land-use for food production, and that will be cheaper than conventional bioethanol sources. Many researchers from around the world are now working on transforming lignocellulosic biomass such as straw, and other plant wastes, into "green" gold — cellulosic ethanol. Cellulosic ethanol, a fuel produced from the stalks and stems of plants (rather than only from sugars and starches, as with corn ethanol), is starting to take root in the United States.

The bioconversion of lignocellulosic biomass to monomeric sugars is harder to accomplish than the conversion of starch, presently used for bioethanol production. However, many countries are making efforts to utilize these lignocellulosic biomasses into ethanol; Sweden, Australia, Canada and Japan are planning to invest into lignocellulosic ethanol mill [21]. The highest ethanol yield from lignocellulosic materials was obtained using switchgrass, 201 L/t with 80% conversion efficiency. Ballesteros et. al [20] studied on ethanol conversion using woody material such as Populus nigra and Eucalyptus globule found that the yield of 145 L/t and 137 L/t feedstock and conversion efficiency ranging 59% — 64% was observed. The conversion efficiency for lignocellulosic materials was lower than the conversion efficiency obtained from sugar-containing material and starchy material.

The selection of the feedstock is in concordance with the interests of each country based on their availability and low cost. Because feedstocks typically account for greater than one — third of the production costs, maximizing the bioethanol yield is imperative [22].