Summary and conclusions

Nickel loaded brown coal char acts a new catalyst for decomposing tar of woody biomass gasification in a two-stage fixed-bed and fluidized bed gasifier has been investigated. With the advantages of catalytic steam tar reforming is carry out at low temperature. On the other hand, catalytic reforming tar methods have significant possibilities in low temperature gasification processing for high product gas quality. This chapter attempts to a comprehensive knowledge for low temperature pyrolysis and gasification process covering study of operation conditions affecting catalytic activity behaviors of nickel loaded brown coal char catalyst.

For the effect of pyrolysis temperature on the crystalline size of nickel particle size, it is slightly affected by temperature lower than 923 K, but great affected by temperature higher than 973 K.

Two-stage Fixed-bed Reactor has been identified as processing the good activity even at low temperature 923 K.

The Ni/BCC catalyst could not perform as well as the Ni/Al2O3 catalyst to decompose tar under pyrolysis process. However, the results show that both catalysts are good active to decompose tar from biomass pyrolysis at 923 K.

The experimental results show a new catalyst having good catalytic activity and stability in the presence of steam at 923 K.

In the new catalyst application with the presence of steam, Ni/BCC catalyst exhibited more activate than conventional catalyst Ni/Al2O3.

It was found that, catalyst has a good performance and stability at 923 K. Approximately 89.5 % of biomass tar was reformed to useful gas components (CO, H2, CH4).

Steam has already proved to be very important in activating the new catalyst and significantly enhances the quality of product gas of woody biomass gasification with high hydrogen concentration of product gas.

The results suggest that the Ni/BCC catalyst offers a potential to be used as a tar steam reforming catalyst in biomass gasification.

Author details

Le Duc Dung

School of Heat Engineering and Refrigeration, Hanoi University of Science and Technology,

Vietnam

Le Duc Dung, Kayoko Morishita and Takayuki Takarada

Department of Chemical and Environmental Engineering, Gunma University Faculty of Engineering, Japan

Acknowledgement

We would like to express my sincere thanks to all who have contributed to this work. We would like to express my gratitude to Ms. Yukiko Ogawa for her help in performing proximate and ultimate analyses of samples. I would like to thank Mrs. Miyoko Kakuage, Mrs. Mayumi Tanaka, Dr. Xianbin Xiao, Dr. Liuyun Li and all of students in Takarada’s Laboratory for their support.

I gratefully acknowledge the financial support of this work by the Project of Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence, Japan Science and Technology Agency for one and half year. Greatly, I acknowledge the financial support of this work from Asian Jinzai project, Japan Government scholarship for one and half year. We would like to acknowledge Gunma University Faculty of Engineering and Hanoi University of Science and Technology for all their support throughout this research.