Plant modular growth and population concept of stem system of the stand

Dividing of yield into individual yield components allowed cereal research and practice to get closer to so-called modular concept of plant and plant growth demographical analyses [13]. White [14] and Porter [15,16] report that plants can be studied as developing modular systems and their growth can be described similarly to processes of population type.

The growth and development of cereal plants consist of a number of growth and development stages of modules (leaves, shoots, stems and grains) that ovelap one another. Therefore, the growth and development of individual leaves and shoots are more determined than those of entire plant. The growth of entire plant does not stop unless the growth and development of the last module is finished, whereas the first formed modules finished their growth and development earlier. The size and properties of leaves and stems in the stand depend not only on their position on the plant, however, on the position of plants in the stand, i. e. on micro-conditions influencing the growth of individual plants [5]. Thus, in cereal stands the variability of site conditions is reflected in changes of inter — and intra-plant relationships, which is expressed by changes in variability of plant modular parts [6]. This concept enables to explain compensatory and autoregulatory processes in cereal stands by modification of both the number and size of plant parts. The stand structure can be described by density distribution (histogram, polygon) of their weight. For effective stand management of small-grain cereals it is important to assess the amount of biomass of productive stems per stand unit area or proportion of this "productive" biomass of the total amount of aboveground biomass.