Rheological characterization of biogas reactor fluids

When considering the rheology for biogas reactors their viscosity is estimated to correspond to a given TS of the reactor fluid. This is mainly based on historically rheological data from sewage sludge with known TS values. However, problems may arise when using these TS relationships for other types of substrates which may impose other rheological characteristics of the reactor fluids. Furthermore, often low consideration is given to possible viscosity changes due to variation in feedstock composition etc.

Shift in the viscosity and elasticity properties of the reactor material related to substrate composition changes can alter the prerequisites for the process regarding mixing (dimension of stirrers, pumps etc. or reactor liquid circulation) and likely also foaming problems (Nordberg & Edstrom, 2005; Menendez et al., 2006). It may also call for changes in the post treatment requirements and end use quality of the organic residue e. g. dewatering ability, pumping and spreading on arable land (Baudez & Coussot, 2001). The additions of enzymes can be used to reduce the viscosity of the substrate mixture in the digester significantly and avoid the formation of floating layers (Weiland, 2010; Morgavi et al., 2001). All these factors affect the total economy for a biogas plant.