Bioethanol Production from Steam Explosion Pretreated Straw

Heike Kahr, Alexander Jager and Christof Lanzerstorfer

University of Applied Sciences Upper Austria

Austria

1. Introduction

1.1 Motivation and environmental aspects

The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and therefore contributes significantly to global warming. Interest in the development of methods to reduce greenhouse gases has increased enormously. In order to control such emissions, many advanced technologies have been developed, which help in reducing energy consumption, increasing the efficiency of energy conversion or utilization, switching to lower carbon-content fuels, enhancing natural sinks for carbon dioxide, capture and storage of carbon dioxide, reducing the use of fossil fuels in order to decrease the amount of carbon dioxide and minimizing the levels of pollutants. In the last few years, research on renewable energy sources that reduce carbon dioxide emissions has become very important. Since the 1980s, bioethanol has been recognized as a potential alternative to petroleum-derived transport fuels in many countries. Today, bioethanol accounts for more than 94% of global biofuel production, with North America (mainly the US) and Brazil as the overall leading producers in the world (about 88% of the world bioethanol production in 2009).

Generally, biofuel production can be classified into three main types, depending on the converted feedstocks used: biofuel production of first, second and third generation. Bioethanol production of the first generation is either from starchy feedstocks, e. g. seeds or grains such as wheat, barley and corn (North America, Europe) or from sucrose-containing feedstocks (mainly Brazil). The feedstocks used for bioethanol production of the second generation are lignocellulose-containing raw materials like straw or wood as a carbon source. Biofuel production of the third generation is understood as the production of lipolytic compounds mainly from algae.

The feedstocks of bioethanol production of the first generation could also enter the animal or human food chain. Therefore, bioethanol production of the first generation is regarded critically by the global population, worrying about food shortages and price rises. Other reasons which lead to research and developments in bioethanol production of the second generation are: a shortage of world oil reserves, increasing fuel prices and reduction of the greenhouse effect. In addition to this, the renewable energy directive (EC 2009/28 RED) demands a reduction for Europe of 6% in the greenhouse gases for the production and use of fuels. This reduction is only possible if biofuels are added to diesel fuel or gasoline by the year 2020. It also seems that the target for greenhouse gas reduction for Europe can only be

achieved if the biofuels are mainly from biothanol of the second generation. Outside Europe (Brasil, USA) the targets can be achieved using first generation biofuels. Hence, research and development on the production of bioethanol of the second generation needs to be intensively promoted, particularly in the European countries.