The role of renewable energy: Biogas technology (anaerobic digestion)

As mentioned above, the economic prosperity and quality of life of a country are closely linked to the level of its per capita energy consumption and the strategy adopted to use energy as a fundamental tool to achieve the same (Amigun et al. 2008; Singh & Sooch 2004). This is illustrated in Figure 1.

Renewable energy could provide the much desired sustainable rural revitalization in most developing countries. It is an ideal alternative because it could be a less expensive option for low income communities. An ideal renewable energy source is one which is locally available, affordable and can be easily used and managed by local communities. Anaerobic digestion is one of a number of technologies that offers the technical possibility of decentralized approaches to the provision of modern energy services using resources such as; cow dung, human waste and agricultural residues to produce energy. Anaerobic digestion of the large quantities of municipal, industrial and agricultural solid waste in Africa can provide biogas that can be used for heat and electricity production and the digester residue can be recycled to agriculture as a secondary fertilizer. Anaerobic digestion systems are relatively simple, economical, and can operate from small to large scales in urban and rural locations (Amigun & von Blottnitz, 2009). In this regard, many African governments have realised that renewable energies could play a very important role in supplementing other existing energy sources.

image001

Electricity Consumption (kWh/person. year)

Fig. 1. Human development index (HDI) and per capita electricity consumption, 2003 — 2004, (Source: UNDP, 2006)

Anaerobic digestion describes the natural breakdown of organic matter in the absence of oxygen into a methane rich gas (biogas) via the complex and synergistic interactions of various micro-organisms types including hydrolytic, fermentative, acidogenic, and methanogenic bacteria (Lusk et al. 1996, Parawira, 2004b). The first group of microorganism secretes enzymes, which hydrolyses polymeric materials such as proteins and polysaccharides to monomers such as glucose and amino acids. The fermentative bacteria convert these monomers to organic acids, primarily propionic and acetic acid. The acidogenic bacteria convert these acids to hydrogen, carbon dioxide, and acetate, which the methanogens utilize via two major pathways to produce methane and carbon dioxide (Lusk et al. 1996; Verma 2002). The potential for organic matter decomposition to generate a flammable gas has been recognized for more than 400 years. In 1808, it was determined that methane was present in the gases produced during the anaerobic digestion of cattle manure. In 1868, Bechamp, a student of Pasteur attempted to isolate the microorganism responsible for the anaerobic bioconversion of ethanol to methane.

The first practical application of anaerobic digestion for energy production took place in England in 1896 when biogas from sewage sludge digestion was used to fuel street lamps. As is the case for many other renewable technologies, interests in anaerobic digestion suffered with the rise of the dependence of petroleum. However some developing countries, mainly in Asia, embraced the technology for the small scale provision of energy and sanitation services (Monnet 2003). Since that time, anaerobic digestion has received considerable interest to harness its waste disposal and energy producing capabilities, with municipal sewage disposal attracting the widest application (Lusk et al. 1996).

The anaerobic digestion process will occur at most temperatures below 70°C, but in the commercial operation of digesters two main temperature ranges are typically employed; the mesophilic range (30-44°C ) and thermophilic range (45-60°C). In addition to sewage sludge, organic farm wastes, municipal solid waste, green botanical waste and organic industrial waste have also been used as feedstock in various small to large scale digesters across the world. Current commercial anaerobic digestion processes generally involve the following steps; pre-treatment (including size reduction and the separation of non-biodegradable substances), digestion, biogas cleaning and conditioning (to remove CO2, water vapour and other undesirables), and subsequently biogas utilization (via internal combustion engines, or the more efficient combined heat and power plant (CHP)). The solid residue from the digestion process (called digestate) can be used as compost.

Various types of small to medium scale biogas digesters have been developed including the floating drum, fixed dome, and plastic bag design (Amigun & Blottnitz 2007). The amount of biogas produced from a specific digester depends on factors such as the amount of material fed, the type of material, the carbon/nitrogen ratio, and digestion time and temperature (Omer & Fadalla 2003; Schwart et al. 2005; Chynoweth et al. 2001). Depending on the context, any type may be used. However, most of the small to medium scale biogas plants built so far are of the fixed dome type (Amigun & von Blottnitz 2009). The technology is gradually gaining popularity in developing countries, especially in Africa where the lack of clean and sustainable energy source represents damage to the environment and its people (Amigun & von Blottnitz 2009). In addition, Sub-Saharan Africa with its warm climates is well-suited for the biogas digester technology (Aboyade 2004).

In the subsequent sections of this chapter, the current state of status of biogas technology in sub-Saharan Africa will be presented, along with a discussion of opportunities and challenges faced. The socio-economic benefits of biogas digesters is also been investigated through the use of case studies of commercial and demonstration plants on the continent. The economics of biogas technology in terms of investment and maintenance in the rural African context is discussed.