Biogas production from Jatropha

Ali et al., (2010), studied the use of Jatropha curcas defatted waste as an alternative feed in biogas plant for its bio-methanisation. The paper observed that as it remains as defatted cake after the extraction of non-edible oil from Jatropha seeds, it cannot be used directly for any purpose due to presence of toxic substance called ‘curcin’. This toxin renders it unsafe for the animal feed and other purposes. It contains 5.73% nitrogen, 1.5% phosphorus and about 1% potassium. On the basis of its chemical composition, its application as substrate to the biogas plant can be a sustainable alternative as compared to the other applications of Jatropha press cake. The study was conducted on a floating drum type biogas plant. The study observed that the biogas plant, initially charged with pure cattle dung, when gradually replaced with Jatropha oil cake (0 — 100%), increased the biogas production up to approximately 25% in reasonable time duration. A significant increase in the percentage of nitrogen, phosphorus and potassium during the biofermentation process invokes the use of the effluent slurry as organic manure. Simultaneous reduction in the amount of the oil (5.67 to 3.95%) sustains the possibility of degradation of oil during methanisation. The plant has showed higher biogas yields at low temperatures also. Therefore, Jatropha defatted waste can successfully be used as an addition as well as substrate in already running cattle dung based biogas plant to get higher yield of biogas in comparison to cattle dung feed.

A laboratory experiment was conducted to find out the biogas production potential of dried, powdered Jatropha cake mixed with buffalo dung at 6% total solids (Prateek, 2009). The experiment was run on daily feeding basis in 5-litre capacity glass digesters for 180 days, while biogas production was recorded at 24 hr interval. Quality of biogas and nutritive value of effluent slurry was also determined. Results show significantly higher (139.20%) biogas production in test (Jatropha cake + Buffalo dung) over control (Buffalo dung only) digesters with methane content of 71.74%. Nutritive value of effluent slurry of test digester was significantly higher in terms of available nitrogen and potassium; calcium; magnesium and carbonate contents than that of control digesters. This co-digestion resulted in 92.94% decrease in chemical oxygen demand.

Dhanya et al., (2009) researched the biogas production potential of Jatropha (Jatropha curcas, L) Fruit Coat (JFC) alone and in combination with cattle dung (CD) in various proportions at 15 per cent total solids by batch phase anaerobic digestion for a period of ten weeks HRT (Hydraulic Retention Time) under a temperature of 350C+10C. The maximum biogas production was noticed in cattle dung and Jatropha Fruit Coat in 2:1 ratio with 403.84 L/kg dry matter followed by 3:1,1:2, 1:1 and 1:3 having 329.66, 219.77, 217.79, 203.64 L/kg dry matter respectively as compared to 178.49 L/kg dry matter in CD alone. The JFC alone was found to produce 91% of total biogas of that obtained from cattle dung. The per cent methane content of the biogas in all the treatments was found on par with cattle dung.