Feedstock supply

In Thailand, cassava is considered as one of the most important economic crops with the annual production around 25-30 million tons. The role of cassava in Thailand is not only as a subsistent cash crop of farmers, but it also serves as an industrial crop for the production of chips and starch, being supplied for food, feed and other products. This can be indicated by a continuous increase in root production since 2000 and be greater than 20 million tons since 2006. With the national policy on bioethanol use as liquid fuel, it significantly drives a rise in root demand. Various scenarios have been proposed to balance root supply and demand, in order to reduce the conflict on food vs. fuel security. Under the normal circumstance, root surplus should be used for bioethanol production, which initiates another industrial demand of roots and helps stabilize root price for farmers. Figure 11 is an example of projecting plan for root consumption by various industries, which corresponds to the targeted root production, proposed by Ministry of Agriculture and current root demand for chip and starch production. Another scenario is to reduce the amount of exporting chips and allocate those locally to existing industries. Meanwhile, the campaign for increasing root productivity (ton per unit area) by transferring good farming and agricultural practices has been distributed throughout the countrywide. In spite of that root shortage occurs in the last few years, caused by unexpected climatic change and widespread disease, i. e. mealy bugs. This, in fact, critically affects starch industries at a much greater extent than ethanol industry. Nevertheless, the starch industry is more competitive for higher root prices than ethanol industry. This situation of an unusual reduction of root supply emphasizes the need of increasing root production. A short-term policy on increasing root productivity from 25 tons/hectare by good farm management and cultivation practice has continuously pursued and expected to be 50 tons/hectare. Furthermore, long-term plan on R&D for varietal improvement is also greatly significant in order to develop varieties with higher root productivity (potentially be upto 80 tons/hectare), good disease resistance and good adaptation to climatic change such as higher growing temperatures or very dry condition.