Как выбрать гостиницу для кошек
14 декабря, 2021
Возьмите полихлорвиниловую трубку длиной 60 см и диаметром 20 см. С помощью транспортира разметьте углы: 100°, 100°, 100° и 60° (рис. 1.48). Напротив каждой отметки прочертите на трубе вертикальную линию. Распилите лобзиком трубу по вертикальным линиям. Куски по 100° получатся шириной примерно по 174 мм. Кусок 60° остается лишним.
Нанесите на каждом куске метку на расстоянии от края 29 мм, а от другого края (на противоположной стороне) на расстоянии 145 мм (в сумме 145+29 и составят 174 мм). Нанесите карандашом линию между линия а этими метками и распилите
лобзиком кусок трубы по этой линии (рис. 1.49).
Рис. 1.49. Распилка лопастей |
Получили 6 фрагментов лопастей. Далее каждый фрагмент нужно зачистить для получения желаемой формы. Лопасти стыкуются между собой, образуя переднюю и заднюю стенки, соответственно ведущий край и отстающий край. Ведущий край нужно закруглить, а отстающий край — заточить. Размещение краев и стенок показано на рис. 1.50.
Втулка |
Ведущий край |
Рис. 1.51. Комплектация ветроэлектростанции |
Фрагменты лопастей скрепляются винтами. Лопасти в сборе привинчиваются к втулке каждая 2 винтами. Полная комплектация ветроэлектростанции показана на рис. 1.51.
Рис 3.2. Важные точки вольтамперной характеристики, которые характеризуют солнечный модуль |
Солнечный модуль может работать при любой комбинации напряжения и тока, расположенным на его вольтамперной характеристике (ВАХ). Однако в реальности модуль работает в одной точке в данное время. Эта точка выбирается не модулем, а электрическими характеристиками цепи, к которой данный модуль (или солнечная батарея) подключен (рис. 3.2).
Напряжение, при котором ток равен 0, называется напряжением холостого хода (Voc). С другой стороны, ток, при котором напряжение равно 0, называется током короткого замыкания (IS£). В этих крайних точках ВАХ мощность модуля равна 0. На практике, система работает при комбинации тока и напряжения, когда вырабатывается достаточная мощность.
Лучше сочетание называется точкой максимальной мощности (ТММ, или МРР). Соответствующие напряжение и ток обозначаются как Vp (номинальное напряжение) и 1р (номинальный ток). Именно для этой точки определяются номинальная мощность и КПД солнечного модуля.
Можно найти все эти параметры — (Voc, Isc, МРР, Vp, Ip) — на шильдике или прилагаемых к модулю характеристиках (заметьте, что Vp и 1р также называются номинальными значениями.
0 |
Примечание.
Однако не рассчитывайте получить номинальную мощность от вашей солнечной батареи — почти невозможно, чтобы собранная
система работала все время в точке максимальной мощности. Кроме изменений освещенности, на вырабатываемую мощность влияет температура солнечной батареи: чем выше температура солнечной батареи, тем ниже ее мощность.
Сотни литров воды используются сегодня в каждом городском доме. Независимо от того, расходуете ли вы ее, чтобы убрать в квартире, помыть посуду или просто для расслабляющегося душа, в конечном счете, вся эта вода спускается в канализацию.
Новый концепт от Jinwoo Han позволит частично использовать энергию воды, текущую по трубам, для получения электроэнергии (рис. 4.10).
Мини-турбина Hydro разработана для получения электричества использую давление воды в трубах. Устройство может быть подключено
к любой трубе у вас в квартире. Вода, пробегая через устройство, активизирует гидроэлектрическую турбину, которая вырабатывает электричество и собирает его в аккумуляторе, который связан с отдельной розеткой.
Микро гидро — Отдельная электро электророзетка генератор I |
Электрокабель |
Рис. 4.10. Внешний вид мини-турбины Hydro |
Поток | воды |
Мини-турбина Hydro — это концепт гаджета, позволяющего вырабатывать электроэнергию для бытовых нужд используя давление воды в трубах (http://techvesti. ru/node/918).
Примечание.
Гидротурбина может устанавливаться, как на конец крана, так и промежуточным звеном.
Гидравлическое давление заставляет вращаться лопасти турбины, закрепленной на генераторе. Устройство оборудовано аккумулятором и розеткой на 220 В, в которую можно включать бытовые электроприборы.
Н |
Примечание.
Единственный недостаток гаджета, это падение давления в выходной трубе.
Вырабатываемое турбиной электричество, может использоваться для подзарядки аккумуляторов от различных устройств, что, в конечном итоге, ведет к экономии электричества. Просто и эффективно!
SHAPE * MERGEFORMAT
По данным метеорологических наблюдений среднегодовая скорость ветра на большей части территории России редко достигает даже 5 м/с. Для Подмосковья средний ветер составляет 3,2 м/с летом и 4,2 м/с зимой. Казалось бы, какие уж тут ветроустановки, — гоняться за несколькими ваттами с квадратного метра. Но не все так плохо:
♦ во-первых, по оценкам самих метеорологов скорость ветра на многих городских метеостанциях систематически занижается на 1—2 м/с;
♦ во-вторых, в приземном слое почти всегда имеется значительная горизонтальная турбулентность, — те самые порывы ветра.
Примечание.
Вертикальноосевые турбины прекрасно работают в непостоянном по направлению потоке, а ротор Савониуса эффективно реагирует и на резкие скачки в силе ветра, — при внезапном падении быстроходности его крутящий момент только растет.
Нетрудно понять, что при слабом ветре его энергия в основном заключена именно в порывах. Так, ветер со средней скоростью 4 м/с, периодически на 15% времени возрастающий еще на 4 м/с (классифицируется в метеорологии как ровный, а не порывистый!), будет содержать в 2 раза больше энергии, чем ламинарный поток 4 м/с.
В условиях городской застройки, когда сильные порывы чередуются с полным затишьем, эта разница будет еще большей. Обычное ветроколесо в подобных условиях, скорее всего, даже не сможет стартовать, не то что выработать электроэнергию. Так же, из этих соображений установка отдельных генераторов под каждой гирляндой выглядит несколько предпочтительней механического суммирования (и тем самым усреднения) моментов.
Можно возразить, что соответствующую турбулентным возмущениям пульсацию электрической мощности на выходе ветроэлектро
станции трудно утилизировать, и даже не стоит за ней гнаться. Да, эта проблема существенна, причем для любых ветроустановок, включая и классические пропеллеры. Для ветряков в составе систем автономного питания удаленных от сети централизованного энергоснабжения фермерских хозяйств и поселков обычно предусматривают разделение потребителей на группы по требовательности к качеству электропитания. По крайней мере, в зимнее время скачки мощности всегда пригодятся для отопления помещений.
Можно надеяться, что проблема запасания энергии впрок, актуальная для всех установок на возобновляемых источниках энергии, все — таки обретет в недалеком будущем приемлемые по стоимости решения. Технологический прогресс в этой области налицо, включая бесчисленные варианты топливных элементов, тепловые аккумуляторы для коттеджей, и даже механические маховики.
Например, вот этот проект (http://www. membrana. ru/articles/ technic/2006/08/ЗО/ 133800.html) составит неплохую компанию ветро — парку гирлянд для сглаживания кратковременных пульсаций.
Относительно простой способ накопления энергии в серьезных объемах, — гидроаккумулирующие электростанции. Однако, их сооружение требует особых географических условий и значительных затрат.
Рассмотрим устройство коллектора. В каждую вакуумированную^ трубку встроен медный поглотитель с гелиотитановым покрытием, гарантирующим высокий уровень поглощения солнечной энергии и малую эмиссию теплового излучения.
Вакуумированное пространство позволяет практически полностью устранить теплопотери. На поглотителе установлен коаксиальный трубчатый прямоточный теплообменник, выходящий в коллектор. Протекающий через него теплоноситель забирает тепло от поглотителя.
К преимуществам этой системы можно отнести непосредственную передачу тепла воде, что позволяет сократить теплопотери. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до температур 120—160 °С.
Принцип действия таков. Солнечная радиация проходит сквозь вакуумированную стеклянную трубку, попадает на поглотитель и превращается в тепловую энергию. Тепло передается жидкости, протекающей по коаксиальному трубчатому прямоточному теплообменнику. Каждая трубка теплообменника соединена с накопительным баком так называемым «коллектором» системой из 2 медных труб. По одной из них нагретая вода передается в бак-накопитель, по другой — холодная вода из бака-накопителя поступает на нагрев в вакуумированные трубки.
— В коллектор
Вакуумированные
трубки
Труба с теплоносителем
Медный поглотитель
с гелиотитановым Коаксиальный трубчатый
покрытием прямоточный теплообменник
Рис. 2.2. Устройство прямоточного вакуумированного
трубчатого солнечного коллектора
В табл. 3.1 приведены примеры комплектаций для решения некоторых типовых задач. Указанное в таблице оборудование рассмотрено после таблицы.
Примеры комплектаций для решения типовых задач электропитания Таблица 3.1
Зарядка «простых» сотовых телефонов (не коммуникаторов) |
Минимальный вариант: Солнечная батарея б Вт, к выходу которой непосредственно подключен разъем сотового телефона. Заряжается большинство телефонов, но некоторые «не хотят», надо проверять |
Улучшенный вариант: Солнечная батарея б Вт или выше и понижающий стабилизатор напряжения. Заряжаются практически все известные телефоны, т. к. выходные параметры стабилизатора можно настроить |
|
Максимальный вариант: Солнечная батарея б Вт и более и накопитель, например, «Вампирчик — Литий». Зарядка идет не только на солнце, но и в любое время от накопленной энергии |
|
Зарядка КПК, сотовых, GPS, фотоаппаратов и других потребителей, питающихся от 5 В |
Минимальный вариант: Солнечная батарея б Вт или больше и стабилизатор (непосредственная зарядка). Солнечная батарея должна быть достаточно мощной, чтобы напрямую питать устройства |
Максимальный вариант: Солнечная батарея 6 Вт или более и накопитель «Вампирчик-Цифра» |
|
Зарядка спутниковых телефонов. При напряжении питания 9—12 В Если 5 В, то см. пункт выше |
Минимальный вариант: 2 солнечные батареи по 8 Вт и стабилизатор. |
Максимальный вариант: Солнечная батарея 8 Вт или более и накопители — «Вампирчик-Цифра». |
|
Зарядка литиевых аккумуляторов 3,7 В |
Минимальный вариант: Солнечная батарея 6 Вт и стабилизатор |
Максимальный вариант: Солнечная батарея 6 В и более и накопитель — «Вампирчик-Цифра» + Универсальные зарядники от прикуривателя» |
|
Зарядка литиевых аккумуляторов 7,4 В |
Минимальный вариант: 2 солнечные батареи по 8 Вт и стабилизатор |
Максимальный вариант: Солнечная батарея 8 Вт и более и накопитель — «Вампирчик-Цифра» + Универсальные зарядники от прикуривателя» |
|
Зарядка NiCd-NiMh аккумуляторов, размера АА, ААА и др. |
Подходит любая из гибких солнечных батарей, даже без зарядника |
Подходит любая из гибких солнечных батарей в комплекте с «Буфером + Универсальные зарядники от прикуривателя» |
|
Зарядка свинцового аккумулятора б В |
Минимальный вариант: Солнечная батарея б Вт (заряжаем током до 0,9 А) |
Максимальный вариант: Солнечная батарея 8—15 Вт со стабилизатором |
|
Зарядка свинцового аккумулятора 12 В |
Либо 2шт 6 Вт, либо 8—15 Вт (со стабилизатором или без него) |
Питание для адаптеров в автоприкуриватель |
Минимальный вариант: Солнечная батарея 8—15 Вт + Разъем прикуривателя |
Максимальный вариант: Солнечная батарея 8—15 Вт + «Буфер» + Разъем прикуривателя |
|
Работа без солнечной батареи |
Используем накопители «Вампирчик-Цифра» или «Буфер» |
Если есть заряженные NiCd-NiMh аккумуляторы или батарейки, то можно запитаться от них либо через понижающий стабилизатор, либо использовать стабилизаторы (понижающий, либо повышающий) от накопителей |
|
Если есть заряженный свинцовый 6 В или 12 В аккумулятор, то питаем все устройства от него через понижающий стабилизатор |
Почему вообще важно знать скорость ветра?
Скорость ветра — это самый важный фактор, который влияет на количество энергии, вырабатываемой ветрогенератором.
17 |
Глава 1. Используем энергию ветра для выработки электроэнергии
|
|р 2Н___ J |, ЮН ХОРОШО плохо Рис. 1J. Хорошие и плохие варианты размещения ветроэлектростанции |
Утром солнце нагревает землю быстрее, чем воду, поэтому ветер дует в направлении побережья. Вечером же земля остывает быстрее, чем вода, поэтому ветер дует от побережья.
Характер земной поверхности. Холмы или горные хребты, находящиеся на открытом ландшафте, обычно считаются превосходным местом для ветряка. На холмах скорость ветра выше по сравнению с окружающей равнинной территорией. Необходимо помнить, что ветер может менять свое направление прежде, чем достигнет холма, так как область высокого давления фактически расширяется на некотором расстоянии перед холмом. Также необходимо помнить, что турбулентность, значение которой резко увеличивается в случае крутого холма или его неровной поверхности, может свести на нет преимущества более высокой скорости ветра (см. рис. 1.2).
Сайт автора этой ветроэлектростанции стал очень популярным. Ответы на наиболее часто задаваемые вопросы он размещает на сайте. Некоторые помещу в книгу (http://www. radiolocman. com/shem/ schematics. html? di=61775).
Вопрос 1:
Что вы делаете, чтобы защитить силовой кабель внутри мачты от закручивания?
Ответ:
Этот вопрос мне задают чаще всего. Отвечаю лаконично: ничего не делаю. Ничего страшного с кабелем не происходит. Ветер разворачивает турбину то в одну сторону, то в другую, и никаких тенденций к закручиванию кабеля не наблюдается. В конце концов, если потребуется, совсем несложно отключить кабель внизу и раскрутить его вручную. Впрочем, у меня есть идея, как легко сделать кольцевой токосъемник, который исключил бы малейшую возможность закручивания кабеля. Но, повторю, большой необходимости в этом нет. Может быть, я испытаю токосъемник на следующей турбине.
Вопрос 2:
Можете ли вы помочь мне сконструировать такую турбину, которая снабжала бы электричеством весь мой дом (ферму), чтобы я мог уйти из-под опеки энергетической компании?
Ответ:
Короткий ответ: нет. И не только потому, что у меня мало свободного времени, а прежде всего, потому, что моя система никогда не конструировалась для электроснабжения целого дома или фермы. Она хороша там, где в условиях полного отсутствия электрических сетей вам надо получить несколько сотен ватт мощности. Я работаю над созданием новых турбин, и даже солнечных батарей, чтобы увеличить производство электроэнергии. Но, даже в случае успешного завершения моих разработок, их мощности никогда не хватит на дом или ферму. Моя конечная цель только в том, чтобы питать небольшой автоприцеп и обсерваторию на участке в Аризоне, где потребность в электроэнергии возникает лишь время от времени. Если вам нужна более мощная система, помочь сможет только человек с опытом конструирования больших турбин.
Вопрос 3:
Над чем вы работаете сейчас?
Ответ:
Если позволит время, я переделаю контроллер заряда. Он будет спрятан в водонепроницаемый контейнер и оснащен автомобильными приборами для контроля тока и напряжения. У меня есть все, что нужно для этого, не хватает только времени. Кроме того, я конструирую турбину, которая автоматически отворачивалась бы от слишком сильного ветра, чтобы не допустить ее разрушения. Я начал, также, работу по созданию солнечных батарей из дешевых фоточув — ствительных панелей и легкодоступных материалов.
Воздушный солнечный коллектор своими руками
Так как же простому самоделыцику использовать даровое солнечное тепло? Для начала, давайте вспомним самую распространенную установку по использованию солнечного тепла — теплицу. Это фактически большой солнечный коллектор. Роль абсорбера в нем выполняют растения и поверхность грунта, роль защитного стекла — стеклянное или полиэтиленовое покрытие. Там работает тот же парниковый эффект. Цель такого коллектора в нагреве самого себя, чтобы растения чувствовали себя комфортнее.
А если мы начнем «забирать» теплый воздух из теплицы? Теплица превратиться в… воздушный солнечный коллектор.
Выход |
Вход |
Рис. 2.8. Самодельный воздушный солнечный коллектор |
Это, наверное, одна из самых простых конструкций, которая совершенно не требовательна ни к материалам, ни к технологии изготовления (рис. 2.8).
Теплоизолированная снизу зачерненная поверхность является дном плоского ящика. Ящик можно сделать из любого подручного материала — доски, фанера и т. д. Сверху этот ящик закрыт стеклом или другим прозрачным материалом. Очень
хорошие результаты дает покрытие из сотового поликарбоната. Получается легкое двухслойное пластиковое покрытие с хорошим светопропусканием и теплоизоляцией.
Видимый свет поглощается зачерненной поверхностью, нагревает ее, а она, в свою очередь, нагревает воздух в коллекторе. Нагретый воздух в такой системе сам является теплоносителем, он забирается из обогреваемого помещения, нагревается в коллекторе и подается обратно. Все воздуховоды (подводящие и отводящие воздух от коллектора) должны быть теплоизолированы.
Для увеличения длины пути, проходимого воздухом, внутри ящика можно установить переборки. Воздух через коллектор прогоняется вентилятором.
Совет.
Подобную систему необходимо снабжать датчиками температуры, чтобы отключать вентиляторы, когда на коллектор не падает солнечный свет. Иначе в пасмурную погоду и ночью вы вместо нагрева получите эффективное охлаждение помещения.
В специальных контроллерах применяются дифференциальные датчики, сравнивающие температуру в помещении и внутри коллектора. Они включают вентиляторы только, когда воздух в коллекторе достаточно прогреется.
Но в домашних условиях место датчиков температуры проще применить небольшую солнечную батарею, от которой будет питаться вентилятор. Напряжение и мощность этой солнечной батареи надо подбирать так, чтобы вентилятор, прогоняющий воздух через коллектор, начинал работать, только если на него падает достаточное количество света, при котором нагревается коллектор.
Например, в пасмурную погоду воздушный солнечный коллектор работать практически не будет, а, значит, и вентилятор при таком освещении вращаться не должен. А вот если на улице светит яркое солнце, коллектор нагревается очень быстро, значит и вентилятор должен работать «на всю катушку». Собрав такую систему, вы получите пассивное отопление вашего дома или дачи в солнечные дни. Преимущества воздушных солнечных коллекторов:
♦ воздушные системы выглядят привлекательнее жидкостных, так как требуют меньше трубопроводов и деталей и поэтому менее дороги;
♦ в воздушных солнечных коллекторах отсутствует опасность протечек и замерзания теплоносителя;
♦ изготовление воздушных солнечных коллекторов и связанных с ними узлов и систем сравнительно просто;
♦ сравнительная простота воздушных систем притягательна для людей, желающих построить свою собственную систему.
К недостаткам воздушных солнечных коллекторов можно отнести узкий спектр их применения. Теплый воздух обычно необходим в холодное время года для обогрева, но зимой солнечные дни — редкость, да и их продолжительность недостаточна.
А вот летом, когда солнечного тепла в избытке, получаемое тепло можно использовать только для сушки кормов или древесины, например. Никому не придет в голову обогревать дом в летний зной. Вот
и получается, что воздушный солнечный коллектор будет большую часть года просто простаивать.
Именно поэтому большее распространение получили солнечные коллекторы с жидким теплоносителем (водяные).
Солнечный коллектор типа «бочка»
Рис. 2.9. Солнечный коллектор типа «бочка» |
Наверняка многие из вас видели, а некоторые возможно и применяют этот тип солнечного коллектора. Конструкция весьма простая — железная бочка, окрашенная в черный цвет и заполненная водой. Вода в такой бочке за день нагревается на солнце, а вечером можно принять теплый душ (рис. 2.9).
Проблем у такой конструкции множество.
Нагревание происходит медленно из-за малой площади, на которую падает солнечный свет. Из-за отсутствия теплоизоляции такая бочка очень быстро остывает. Так что если захотите принять душ поздним вечером или утром, то только холодный.
Если у кого-то уже имеется такая бочка, вы можете ее усовершенствовать. Бочка заключается в стеклянный ящик, который не будет препятствовать ее нагреванию, но будет существенно замедлять остывание. Северную сторону бочки, на которую никогда не попадает солнце, можно утеплить более основательно, например, минеральной ватой. Такое простейшее усовершенствование также значительно ускоряет нагрев воды и существенно повышает максимальную температуру. Не обожгитесь!
Для повышения разности уровней воды, особенно в нижних течениях рек, сооружаются плотины.
0 |
Определение.
Плотина — это массивная перемычка, цель которой удерживать водный поток, это незаменимый инструмент при практическом использовании водных ресурсов.
Кстати, в течение долгого времени теории строительства плотин не существовало. Только в 1853 году французский инженер Сазилли обосновал некоторые теоретические постулаты. Плотины обеспечивают повышение уровня воды в реке или ее отвода. В последнем случае плотины обеспечивают судоходство или орошение земель.
Плотины могут отличаться в зависимости от конструкции и разделяться на две группы:
♦ гравитационные плотины выглядят как каменные или бетонные заграждения и препятствуют поступлению воды своим весом;
♦ арочные плотины выполняют свои обязанности благодаря особой конструкции.
Успешное функционирование арочных плотин завйсит от трех показателей:
♦ сопротивления вертикальных элементов сооружения;
♦ массы и особенностей арочной конструкции, которая опирается на береговые устои.
При возведении плотины необходимо учитывать воздействие некоторых внешних факторов. Это так называемые сдвигающие силы, появление которых обусловлено воздействием воды, ветра, ударами волн, перепадами температуры. Пренебрежение строителей к вышеперечисленным факторам может привести к разрушению плотины. Поэтому производятся определенные расчеты, позволяющие воспрепятствовать негативному действию сдвигающих сил.
Например, горизонтальная составляющая давления воды увеличивается с глубиной и равна:
Prop=Wxh
где w — вес единицы объема воды; h — глубина.
Очень важно и вместе с тем достаточно сложно точно рассчитать фильтрационное давление, которое воздействует на подошву конструкции из-за того, что под нее просачивается вода. Чтобы определить степень вероятности таких процессов, необходимо проведение исследований. При этом многое зависит от грунтового ложа. Если фундамент плотины установлен на гальке, речном песке, пористой породе, то давление на основание конструкции будет равно полному гидростатическому напору.
В том случае, когда основание плотины соединено со скальными породами при помощи цемента и щели практически отсутствуют, можно получить давление, равное всего лишь 10—40 процентам гидростатического напора.