Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

 

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В ВЕЛИКОБРИТАНИИ

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В ВЕЛИКОБРИТАНИИ
Солнечный дом Куртиса. Показанный на рис. 4.8 первый солнечный дом в Великобритании был спроек­тирован архитектором Куртисом и построен в Рикман- суорте, близ Лондона, в 1956 г. [28, 29]. Тогда же Кур­тис поселился в нем и,’ вероятно, он может утверждать,

что он дольше, чем кто-либо другой, прожил в собст­венном солнечном доме. Этот дом явился результатом проведенных Куртисом в течение предыдущих лет иссле­дований в области проектирования жилых зданий и ре­гулирования условий в них, начиная от простых отопи­тельных устройств и кончая полным кондиционировани­ем воздуха. На стадии проектирования в качестве основного положения было принято, что регулирование условий внутри помещения должно осуществляться СИ — 84

стемой, использующей солнечную энергию и содержа­щей также тепловой насос и за счет этого обеспечива­ющей отопление и охлаждение, а также горячее водо­снабжение. Так же, как и другие исследователи, пытавшиеся применить идею солнечного отопления по­мещений в Великобритании, Куртис пришел к выводу, что без очень большой, хорошо изолированной тепло­аккумулирующей системы можно за счет солнечной энергии покрыть только определенную долю суммарной отопительной нагрузки. Общая цель разработки состоя­ла в обеспечении внутри помещения требуемой темпе­ратуры в течение всего года независимо от темпе­ратурных условий снаружи. При этом необходимо было учитывать требования эстетического харак­тера.

Участок, расположенный на вершине холма, возвы­шающегося над долиной, был выбран так, чтобы обес­печить требуемую ориентацию дома и отсутствие зате­нения. Основные помещения были расположены на юж­ной и западной сторонах, а на восточной стороне рас­полагались прихожая, лестничная площадка и две спальни. Конструктивно дом был выполнен следующим образом: между кирпичными торцами боковых стен за­креплялась специальная застекленная панель с деревян­ными переплетами. Чтобы лучше использовать поступа­ющую солнечную энергию, было решено обеспечить мак­симальную площадь стеклянной поверхности на фасаде, обращенном к югу, поэтому вся южная сторона за не­большим исключением состоит из стеклопакетов, содер­жащих два слоя прозрачного материала «плейгласс», закрепленного в деревянных рамах. Панели, обращен­ные к западу и северу, также имеют двойное остекле­ние. Кондиционирование воздуха круглый год обеспечи­вается тепловым насосом, для которого в качестве низ­котемпературного теплового источника сначала исполь­зовался воздух, а после реконструкции системы — вода. Куртис сообщает, что в течение первого года эксплуа­тации составлялся график продолжительности периодов солнечного сияния и было отмечено, что в течение но­ября и января наблюдались продолжительные периоды поступления прямой солнечной радиации, что способст­вовало постепенному прогреву помещения и обычно при­водило к увеличению эффективности работы системы в этот период. Распределительная система воздушного

Подпись: потока дораоатывалась в течение следующих двух лет, и отопление первого этажа было отрегулировано исходя из максимальной эффективности, что потребовало- значительно большего количества распределяемого воз-| духа по сравнению с прежним уровнем. Средняя температура колебалась между 20,6° С в дневные часы и 22,0° С в вечерние. Оказалось, что обогрев помещения происходил очень быстро, и если погода была не очень холодной, то тепловой насос отключался приблизительно в 23.00. Благодаря хорошей теплоизоляции удавалось сохранять достаточное количество тепла приблизительно до 5.00, когда установка начинала работать, и к 7.00 на уровне пола обеспечивалась температура около 19° С.| Основной вывод, который следует из этой работы, СО-; стоит в том, что в Великобритании использование боль-ших остекленных поверхностей для обеспечения макси-мального прихода солнечного излучения во внутренние помещения дома может существенно снизить нагрузку на отопительные приборы, включая тепловой насос, но, с другой стороны, наличие таких больших остекленных поверхностей способствует появлению высоких тепловых потерь в холодные пасмурные дни или вечерние часы, а также в ночные часы в зимний период. Следует установить и эффективно использовать какие-либо средства, регулирующие площадь остекленной поверхности с тем, чтобы сохранить полученное от солнца тепло даже ценой резкого ограничения проникновения в помещение дневного света. В доме Куртиса можно 4/s площади остекленной поверхности закрыть плотными портьерами, при этом оставшаяся часть обеспечит достаточное освещение интерьера в дневные часы. В общем отопительная (охлаждающая) солнечная система работает удовлетворительно с 1956 г., причем полные годовые текущие затраты составляют одну треть от затрат в обычных домах, расположенных по-соседству Солнечный дом в Уоллеси. Самое известное солнечное здание в Европе, пристройка к школе Св. Георгия в Уоллеси, было спроектировано Морганом и построено в 1962 г. [30—32]. Оно включало большую «солнечную» стену и за счет этого удавалось поддерживать хорошие тепловые условия в течение зимних месяцев без применения обычного центрального отопления, что привлекло внимание большого числа разработчиков. Ведомство по охране окружающей среды возглавило изучение эксплу- 86 атационных и тепловых характеристик пристройки, ко­торое было проведено под руководством Дэвиса из Ли — [ верпульского университета.

Главная солнечная стена целиком занимает обра — [ щенный к югу фасад здания и имеет длину 70 м и вы­соту 8,2 м. Из расчета общего теплового баланса было принято среднее значение U, равное 3,1 Вт/(м2-К). Большая часть стены имеет двойное остекление с про­межутком между стеклами шириной 600 мм. Однако каждый класс обеспечен двумя или тремя открывающи­мися окнами с одинарным остеклением. Ширина здания в направлении с севера на юг составляет приблизитель­но 11,5 м. Пол нижнего этажа состоит из 100-миллимет­ровых брусьев, уложенных на подушку из бетона тол­щиной 150 мм. Промежуточное междуэтажное перекры­тие выполнено из бетона толщиной приблизительно 230 мм, а крыша представляет собой бетонную плиту толщиной примерно 180 мм, над которой расположен слой вспененного полистирола толщиной 126 мм, соот — [ ветствующим образом защищенный. Оштукатуренные перегородки имеют толщину 230 мм. На северной сто­роне наружные стены на уровне первого этажа выпол — I йены из кирпича толщиной 230 мм с нанесенным снару­жи слоем полистирола толщиной 125 мм. Среднее зна — j чение U здесь составляет 0,24 Вт/(м2-К). На уровне по­ла наружная стена является частично глухой, а час­тично представляет собой солнечную стену, подобную стене на южной стороне. Общее значение U для здания составляет 1,1 Вт/'(м2-К). Единственными источниками тепла в классе пристройки являются обычно обитатели, электрическое освещение и солнечная радиация.

В старых школьных зданиях насчитывается такое же I число школьников, что и в пристройке (около 300 чел.), так что обе группы помещений можно сравнивать меж­ду собой.

В результате эксплуатационных испытаний установ — лено, что солнечное отопление обеспечивает экономию около 30% топлива, расходуемого на отопление школь­ных зданий обычного типа.

Дом в Милтон-Кейнсе. В 1973 г. Управление по ох — I Ране окружающей среды выдало субсидию на создание [ экспериментальной солнечной отопительной установки в L Новом районе Милтон-Кейнса под руководством Зоко — . Лея, ранее работавшего в отделе архитектуры при Поли-

Подпись: гг
РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В ВЕЛИКОБРИТАНИИ

техническом институте [33, 34]. Целью проекта было] проверить и доказать возможность применения солнеч-1 ного отопления в Великобритании. Один из сотни уже) построенных стандартных, расположенных террасой до-3 МОВ В Милтон-Кейнсе является В тепловом отношении ‘ весьма неэффективным зданием с умеренной изоляцией и фактически не обладает никакой тепловой инерцией. Совершенно ясно, что в будущих проектах солнечных домов в Великобритании следует предусматривать более і массивную конструкцию с существенно улучшенной теп-] лоизоляцией, но даже. при этих условиях эксплуатацион-1 ные характеристики такого дома вряд ли будут сравни-і мы с характеристиками аналогичного дома, но без сол4 нечной установки. Показанный на рис. 4.9 солнечный; дом, принятый в эксплуатацию в марте 1975 г., полно-! стью оборудован для продолжительных испытаний.

Особенность его проектирования заключалась в том, что на различных этапах работы для моделирования! почасовой передачи тепла для каждого дня в годуі широко использовалась ЭВМ. Хорошо известно приме-] 88

нєнне моделирования с помощью ЭВМ для многих раз­работок в США, однако в Великобритании этот пример, по-видимому, был первым в инженерной практике. Та­ким образом, можно было определить количество энер­гии, поступающей из коллектора в бак и из бака на отопление, а также при необходимости вклад источника дополнительной энергии. Разработанная программа была впоследствии усложнена путем введения некоторых дополнительных факторов, например температурной стратификации в баке-аккумуляторе. Предварительные расчеты показали, что в период с апреля по сентябрь отопительная нагрузка должна обеспечиваться полно­стью, а в декабре и январе менее чем на 30%. Расход энергии на горячее водоснабжение для бытовых нужд удовлетворялся с апреля по сентябрь на 70—85%, а в зимние месяцы это значение, естественно, значительно снижалось. В период продолжительного и очень жарко­го лета 1975 г. возникла проблема перегрева в спаль­нях. Сначала считали, что перегрев вызван тем, что непосредственно к спальням примыкали баки-аккумуля­торы, температура которых достигала 70° С. Однако впоследствии было установлено, что чрезмерное повы­шение температуры наблюДалось и в соседних обычных домах, так что эта проблема, вероятно, связана с кон­структивными особенностями этих домов. В оконча­тельном проекте приведены следующие данные: наклон крыши — 30° (при моделировании на ЭВМ получено зна­чение 34°), площадь солнечного коллектора — 37 м2 (в первоначальном проекте — 40 м2). Общая полезная площадь пола — 90 м2. Емкость бака-рккумулятора —

4,5 м3 (первоначально в проекте указана емкость 5,2 м3), изоляция толщиной 100 мм выполнена из стек­ловолокна.

Солнечные дома в Хайр-Бебингтоне. Появившееся в феврале 1975 г. сообщение о проекте строительства де­вяти обогреваемых солнцем домов в Хайр-Бебингтоне близ Ливерпуля вызвало большой интерес, поскольку разрешение на разработку получил городской совет ок — круга Виррэл, который ранее успешно принимал уча­стие в создании пристройки к школе Св. Георгия. Про­ект является результатом совместной работы стеколь­ной фирмы «Братья Пилкинтон» и Технологического университета Лоуборо и будет финансироваться Управ­лением по охране окружающей среды.

Дома будут построены из кирпича высокой плотно­сти с двойным остеклением одной из наружных стен. Эта стена будет поглощать солнечное излучение и пере — излучать его внутрь дома. Эксплуатационные характе­ристики девяти таких домов, обогреваемых за счет сол­нечной энергии, будут сравниваться с — характеристика­ми пяти обычных домов, построенных на том Же участке. По предварительным расчетам экономия энер­гии должна составить от 30 до 60%• Предусмотрено регулирование поступления тепла от стены внутрь жи­лого помещения. Каждый из девяти домов будет иметь независимую систему охлаждения с вентилятором для улучшения естественной вентиляции и снижения влия­ния избыточного поступления солнечной радиации в летний период. Дома должны быть хорошо изолирова­ны и оборудованы герметичными двухслойными стекло­пакетами в каждом окне. На одном из солнечных и одном из традиционных домов будет установлен также плоский солнечный коллектор для снабжения горячей водой.

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Солнечный дом 1 (МТИ). Построен в 1939 г., состо­ял из двух помещений — служебного и лабораторного общей полезной площадью 46,5 м2 [2, 9, 10, 11]. Боль, шая часть крыши, наклоненной под углом 30° к югу, представляла собой коллектор с тройным остеклением общей площадью 37,9 м2 и площадью теплоприемной поверхности 33,45 м2. Поглощающая поверхность была выполнена из зачерненного медного листа с припаян­ными параллельными медными трубами. В подвале размещался большой бак-аккумулятор горячей воды емкостью 65,86 м3 со средней толщиной изоляции 665 мм. В отношении тепловых характеристик. здание было спроектировано так, чтобы соответствовать шести­комнатному дому с умеренной изоляцией. Это было первое здание, полностью обогреваемое за счет солнеч­ной энергии, поскольку тепло, накапливаемое в летний период, могло быть использовано зимой, однако такой способ признали неэкономичным и разрушили здание в 1941 г.

Солнечный дом II (МТИ). В 1947 г. было построено одноэтажное лабораторное здание с размерами прибли­зительно 4,26X13,4 м и высотой 2,44 м; солнечный кол­лектор, состоящий из семи отдельных панелей, площа­дью 10 м2 каждая, располагался на южной стене под] углом к вертикали [9, 10, 12]. Были исследованы раз­личные типы аккумулирующей системы, а в период 1947—1949 гг. на базе этого дома был создан дом III.

Солнечный дом III (МТИ). На крыше дома, равно- го по площади дому II, был смонтирован коллектор с двойным остеклением и поглощающей системой, выпол-J ненной, как в доме I [9, 10, 11]; его площадь составля-j ла 37,2 м2 при наклоне коллектора 57° к горизонту. Ак-| кумулятором служил цилиндрический бак емкостью]

4,5 м3, установленный на чердаке. В период четырехъ зимних месяцев система обеспечивала 85% энергии на] отопление помещений, а впоследствии 90%. В 1955 г. дом сгорел.

Солнечный дом IV (МТИ). Построенный в.1959 г. дом [9—11], который показан на рис. 4.1, считался уни­кальным [14], поскольку он проектировался именно как; j солнечный дом, т. е. так, чтобы в нем по возможности]

] наиболее полно использовалась поглощаемая энергия,.

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.1. Солнечный дом IV (МТИ).

были сведены до минимума энергетические потери, что­бы он по комфорту отвечал требованиям, предъявляе­мым к современному жилищу. Дом представлял собой двухэтажную постройку полезной жилой площадью 134,7 м2. Часть южной стены дома представляла собой солнечный коллектор площадью 59,5 м2, расположенный под углом 60° к горизонтали. Коллектор с двойным ос­теклением был переделан: к зачерненному алюминиево­му листу, суммарная поглощательная способность кото­рого составляла согласно измерениям 0,97, были меха­нически прижаты медные трубки. Хорошо изолирован­ный водяной бак-аккумулятор имел емкость 5,7 м3. В пе­риод эксплуатации обитатели дома старались не изме­нять своих привычек и образа жизни, не приспосабли­ваться к солнечному отоплению, так что хозяйка зани­малась мытьем посуды и стиркой тогда, когда это было ей удобно, а не только тогда, когда сияло солнце. В течение зимнего сезона, с 30 сентября 1959 г. по 30 марта 1960 г., 44% нагрузки на отопление помеще­ния и 57% нагрузки на горячее водоснабжение для бытовых нужд удовлетворялось за счет системы сол-

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.2. Солнечный дом в Доувере.

нечного энергоснабжения. Это было значительно мень-1 ше расчетных эксплуатационных характеристик, что| объяснялось суровыми погодными условиями, которыми! в том году характеризовался зимний период. Через два^ года эксплуатационные трудности заставили отказать-1 ся от этой системы, хотя при ее использовании в тече-1 ние двух зим 48% суммарной нагрузки обеспечивалось за счет солнечной энергии.

Солнечный дом в Доувере. Система солнечного отоп­ления первого дома, который должен был полностью обогреваться за счет солнечной энергии, разработана; Телкес [3, 9, 10], являвшейся в то время соискателей при МТИ. Проект дома, показанного на рис. 4.2, выпол! нен бостонским архитектором Э. Раймонд. Строитель­ство осуществлено в рамках частного проекта на сред-] ства А. Пибоди в Доувере (штат Массачусетс); впервые! дом был заселен в сочельник 1949 г. Вертикально рас-1 положенный воздушный коллектор с двойным остекле-1 нием площадью 66,89 м2 занял целиком южный фасад! двухэтажного здания на уровне второго этажа. Каждая! панель коллектора содержала два оконных стекла раз-Я 70

мерами 3,28X1,22 м, разделенных воздушным зазором шириной 19 мм. Поглощающая поверхность была вы­полнена из стандартных листов оцинкованной стали, окрашенных обычной черной матовой краской. Позади каждого листа имелся воздушный промежуток шириной 76 мм, по которому мог циркулировать воздух по на­правлению к трем теплоаккумулирующим бункерам. В этих бункерах общим объемом около 13,3 м3 находи­лись сосуды с глауберовой солью — декагидратом серно­кислого натрия Na2S04- 10Н2О. Телкес ясно понимала, что если принять для аккумулирования тепла на про­должительные периоды воду или камни, то основная трудность будет состоять в том, чтобы найти достаточ­но большое пространство для размещения аккумулято­ра, и предложила использовать скрытую теплоту плав­ления или растворения химических соединений, напри­мер глауберовой соли с температурой плавления около 32° С; запас тепла был при этом приблизительно в шесть или семь раз больше, чем в водяном аккумулято­ре того же объема. Обогревался только нижний этаж площадью 135,3 м2, причем тепло из аккумулятора по­давалось в комнаты с помощыр небольших вентилято­ров, которые управлялись индивидуальными терморе­гуляторами. Исходная энергоемкость аккумулятора была рассчитана на покрытие тепловой нагрузки в про­должение 12 дней в зимний период. В течение первого года эксплуатации система солнечного отопления пол­ностью обеспечивала тепловую нагрузку, затем, однако, характеристики ухудшались вследствие расслоения фаз, необратимости теплового эффекта при плавлении и пере­охлаждения соли, так что через некоторое время потре­бовался источник дополнительного тепла. Через четыре года, когда дом был расширен, солнечную отопительную систему ликвидировали, но к тому времени были уста­новлены некоторые очень важные особенности этой схемы:

эффективность применения солнечного воздушного коллектора, имеющего простую конструкцию — и являю­щегося одновременно тепловым коллектором и стеной. Такое использование коллектора в качестве стены или части крыши было характерной чертой большинства последующих конструкций солнечных домов;

преимущество наличия регулируемых температур­ных зон в различных частях дома. Это обстоятельство

не учитывалось во многих более поздних проектах, нс! впоследствии снова была подтверждена его важности для экономии энергии;

большая энергоемкость теплового аккумулятора не-| большого объема, котора*я обеспечивалась за счет скры-1 той теплоты плавления солей. Проблему расслоения фаз* при повторении циклов еще предстояло решить, И ЭТ(Я оказалось одной из наиболее трудных проблем в прак-1 тике применения солнечной энергии для отопления.

Бунгало «Блисс-Хауз». Имевшееся в Амадо (штаті Аризона) одноэтажное бунгало полезной площадью» 62,43 м2 было в 1954—1955 гг. реконструировано и снабЯ жено солнечной воздушной отопительной системой с каЯ менным аккумулятором [15]. Коллектор с одинарным! остеклением состоял из четырех слоев черной хлопчаЯ тобумажной ткани с зазором между слоями — шириной!

12,5 мм. Он имел площадь 29,26 м2 и был установлені вплотную к бунгало под углом 53° к горизонтали. Ак-Я кумулирующая система из камней диаметром 100 мм,1 общей массой 65 т и объемом приблизительно 36,8 м3| была расположена также вблизи бунггЫо в изолирован-! ной подземной камере. В процессе эксплуатации при со-Я ответствующем уровне радиации воздух подавался вен-1 тилятором из коллектора в аккумулятор. По мере надоб-1 ности второй вентилятор снабжал дом воздухом либо! прямо из коллектора, либо из аккумулирующей системы.! Система полностью обеспечивала отопительную нагруз-1 ку бунгало в зимний период, и было объявлено, что! это — первый дом в США, отопление которого на 100% 1 обеспечивается за счет солнечной энергии. Для охлажЯ дения в летний период воздух в ночные часы прогонялЯ ся сквозь отдельную горизонтальную насадку, покрытую! черной тканью. Таким образом воздух дополнительно! охлаждался — примерно на 1° С, затем направлялся в аккумулирующую систему. В течение дня охлажденный* воздух можно было направлять в бунгало. Систему де-| монтировали после успешной эксплуатации в течение! немногим более года.

Интересной особенностью проекта было то, что ем! кость аккумулятора соответствовала десятидневному за-1 пасу тепла. Этого было вполне достаточно, поскольку в; зимний период солнце в течение одного дня обеепечива-j ло более чем двухдневную потребность в тепле. В более] северных широтах необходима значительно большая еэд!

7?

кость аккумулятора, чтобы Компенсировать существенно более низкий уровень солнечного излучения" в зимний период. Экономические показатели в то время были неблагоприятными, поскольку капитальные затраты ока­зались в пять раз больше, чем для обычных отопитель­ных систем, так что было невозможно возместить ка­питальные затраты и проценты на капитал количеством сэкономленного топлива — отношение капитальных за — тоат к стоимости сэкономленного топлива составляло 50:1. Невыгодность этого проекта являлась очевидной.

Административное здание в Альбукерке конструкции Бриджеса и Пэксона. Первое в мире административное здание, обогреваемое за счет солнечной энергии, было построено в Альбукерке (штат Нью-Мексико) и введено в эксплуатацию в августе 1956 г. [16, 17]. Полезная площадь здания составляла примерно 400 м2, и оно бы­ло снабжено обращенными к югу плоскими коллекто­рами, наклоненными к горизонтали под углом 60°, как показано на рис. 4.3. Эффективная площадь коллектора с одинарным остеклением равнялась примерно 70 м2, а емкость подземного изолированного бака-аккумулято­ра составляла 22,7 м3. Все элементы оборудования бы­ли стандартными, за исключением коллекторов, которые состояли из алюминиевых листов толщиной 0,476 мм, окрашенных неселективной черной краской, и медных труб с наружным диаметром 38 мм, припаянных к об­ратной стороне листов на расстоянии 150 мм друг от друга и образующих непрерывный контур, содержащий нагреваемую воду. В здание тепло подавалось с теплой водой, поступающей из бака-аккумулятора при темпера­туре около 40° С и проходящей по трубам, расположен­ным в напольных и потолочных панелях. Когда темпе­ратура воды в аккумуляторе оказывалась недостаточно высокой, чтобы можно было удовлетворить потребности здания в тепле, использовался тепловой насос.

Преимущества использования теплового насоса с солнечным коллектором были ясно изложены в первом сообщении о характеристиках здания [16]. В летний период тепловой насос может служить для охлаждения здания, причем такое его использование для двух це­лей является выгодным. В холодную и облачную лого­су можно допустить, чтобы температура коллектора и аккумулятора сильно понизилась, и получить в резуль­тате повышение эффективности работы коллектора и

73

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.3. Административное здание в Альбукерке конструкции Бриджеса и Пэксона.

увеличение энергоемкости аккумулятора. Использова­ние теплового насоса позволяет также устанавливать коллектор и бак-аккумулятор меньших размеров. В пер­вый сезон эксплуатации прямое солнечное отопление удовлетворяло 62,7% суммарной отопительной нагрузки, а оставшиеся 37,3% обеспечивались тепловым насосом. Следует подчеркнуть, что даже при работе теплового насоса главным источником тепла оставались солнечные коллекторы. Количество энергии, расходуемой тепловым насосом на собственные нужды, составляло только 8,2% ] суммарной отопительной нагрузки. Интересно отметить, что при существовавших в то время (1956—1957 гг.) ] ценах на топливо экономия средств на отопление не воз — ] мещала необходимых начальных издержек на солнечные і отопительные системы в большинстве районов США. Но 1 всегда можно найти такие районы, в которых высокие ] цены на топливо обусловливают экономическую целесо — і образность использования солнечных отопительных си­стем. Система в своем первоначальном виде работала j около шести лет с отдельными случайными неисправ — I ностями, такими как, например, повреждение, вызван — ] 74

ное неполным дренированием системы во время моро­за. Повреждались также гибкие резиновые трубчатые соединения.

Система солнечного отопления была восстановлена в рамках проекта ЭРДА [3] в 1974 г. [17]. Принципиаль­ное изменение состояло в том, что для устранения про­блемы замерзания самодренирующаяся система была заменена системой, содержащей водоэтиленгликолевый теплообменник, насос и сеть трубопроводов; кроме то­го, были добавлены пять небольших компактных водо­воздушных тепловых насосов, которые должны исполь­зовать энергию теплой воды, циркулирующей в здании, и нагнетать нагретый воздух в комнаты. Главной целью проекта является получение обобщенных данных для проектирования солнечных энергетических систем с теп­ловыми насосами, необходимых архитекторам и инже — нерам-консультантам.

Дом Мэтью, Кус-Бей (штат Орегон). Этот дом был спроектирован и построен владельцем Мэтью в 1966— 1967 гг. и является лучшим для того времени примером солнечного дома, построенного частным образом [18— 20]. Многие важные конструктивные особенности, при­сущие этому дому, могут быть использованы при созда­нии солнечной отопительной системы любого дома. Он также обладает классической простотой первых солнеч­ных домов; так, жилые комнаты и кухня расположены на южной стороне, чтобы использовать солнце в зим­ний период, а в летний период эти помещения затеня­ются длинным навесом. На рис. 4.4 показаны системы солнечного отопления этого дома. Коллектор высотой

1,5 м и длиной 24,4 м, подробно описанный в гл. 8, расположен на крыше и для увеличения эффективно­сти работы снабжен рефлектором, выполненным из обычной алюминиевой фольги, приклеенной кровель­ным компаундом. Вода из главного бака-аккумулятора прокачивается по трубопроводам насосом мощностью 184 Вт, который включается в работу с помощью тер­морегулятора, установленного на крыше. Из трубопро­водов вода сливается в 170-литровый расширительный бак, а затем в бак-аккумулятор, если насос не работает. Бак-аккумулятор имеет изоляцию только со стороны

расположенного над ним подвала и не изолирован от почвы, прилегающей к боковым стенкам и днищу. Та­ким образом, в некоторые периоды года в почве может аккумулироваться или теряться значительное количе-. ство тепла. Так, в сезон 1974—1975 гг. было отмечено] аккумулирование тепла в осенний период. На крупных

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.4. Система солнечного отопления дома Мэтью.

/ — насос; 2 — расширительный бак; 3 — солнечный коллектор; 4 — отражаю­щая поверхность; 5 — нагреватель воды для бытовых нужд; 6 — изоляция из стекловолокна; 7 —подпитка нагревателя воды для бытовых нужд; 8— бак — аккумулятор.

тепловых магистралях, соединяющих отсек бака-акку­мулятора с жилым помещением, расположены изолиро­ванные заслонки, которые управляются терморегулято­рами, так что летом отопление можно полностью от­ключить. Вентиляторы для принудительной циркуляции воздуха отсутствуют. Стоимость материалов, включая стальной бак-аккумулятор емкостью 30 м3 и коллектор, составляла в 1967 г. менее 1000 долл. Сооружение бака, с которого Мэтью начал строительство, заняло пять не­дель, на остальную систему потребовалось восемь не; дель. В январе 1974 г. к системе был присоединен отдельно стоящий коллектор площадью 30 м2, смонти­рованный приблизительно на расстоянии 20 м от дома.

Следует обратить внимание на ряд особенностей соЛ> нечного дома Мэтью:

дом был построен из стандартных деталей без спе­циальной изоляции, хотя солнечное отопление преду­сматривалось с самого начала;

дом расположен сравнительно далеко на севере (42°,5 с. ш.) в районе, известном сплошной облачно­стью в зимний период;

, сочетание почти вертикального солнечного коллекто­ра (82° к горизонтали) с почти горизонтальной отража­ющей поверхностью (8° к горизонтали);

относительно большая (30 м3) емкость бака-аккуму­лятора;

сочетание установленного на крыше и отдельно сто­ящего коллекторов с большими размещенными перед ними отражающими поверхностями.

Опубликованы подробные результаты, полученные в период 1974—1975 гг. [18], из которых следует, что 85% суммарных потребностей в тепле на отопление удовлет­ворялось за счет аккумулированной солнечной энергии. Семья Мэтью допускала, чтобы температура внутри по­мещения падала ниже проектного значения 21° С, по­скольку поступления тепла из коллектора и бака-акку­мулятора уменьшались в течение зимы.

Дома Томасона. Первый дом, спроектированный То­масоном, был одноэтажной постройкой с подвалом и аккумулятором, установленным под покатой крышей [21—24]. Построенный в 1959 г. в Вашингтоне (округ Колумбия) дом имел коллектор площадью 28 м2 при общей жилой площади 139 м2. Томасон одним из пер­вых конструкторов применил простую и относительно недорогую коллекторную систему струйного типа, в ко­торой вода из бака-аккумулятора направляется в гори­зонтальную распределительную трубу в верхней части коллектора. В первом варианте системы в качестве поглощающей поверхности использовался черный гоф­рированный алюминий и коллектор имел два слоя про­зрачной изоляции — один из стекла, а другой — из про­зрачной полиэфирной пленки. Вода, вытекающая через отверстия в распределительной трубе, попадала непо­средственно в расположенные против них канавки в гофрированном листе. Нагретая вода собиралась в от­крытом желобе, расположенном в основании коллекто­ра, и возвращалась в бак-аккумулятор. Аккумулятор представлял собой водяной бак емкостью 6,1 м3, вокруг которого размещалось 50 т гальки диаметром 100 мм. Система нагрева воды для бытовых нужд включала 1000-литровый подогреватель. Энергоемкость аккумуля­тора в системе обеспечивала примерно пятидневный

запас тепла на отопление, и утверждалось, что система) I солнечного отопления удовлетворяла 95% отопительной нагрузки. Для охлаждения в летний период вода в ноч-11 ные часы направлялась по неостекленным, обращен-1 ным к северу каналам, расположенным на крыше, и ‘ охлаждалась за счет испарения, конвекции и излу-|1 чения.

Второй дом, также сооруженный в Вашингтоне (ок-Я руг Колумбия) в 1961 г., имел коллектор площадью! 52 м2 и отапливаемое жилое, помещение площадью 1 63 м2. Полностью похожий по замыслу на первый дом, Я он получал большее количество тепла за счет горизон-1 тальной алюминиевой отражающей поверхности пло-1 щадью 31 м2, находившейся у основания обращенного! к югу коллектора. В третьем доме Томасона, построен-! ном в 1963 г., бак-аккумулятор использовался одновре-! менно в качестве закрытого обогреваемого плавательно-! го бассейна, а система коллекторов была полностью! смонтирована на крыше таким образом, что солнечное! излучение в зимний период непосредственно попадало! через окна в жилую комнату и плавательный бассейн,! расположенный на южной стороне. Четвертый дом ни-! когда полностью не испытывался. Дома с пятого по| седьмой были описаны в 1973 г. [23], но только шестой,! частично отапливаемый роскошный дом в Мехико-Сити был полностью построен.

Проект седьмого дома включал расположенный на | крыше мелководный водоем-коллектор с отражателем.! Каждую ночь нагретая вода могла стекать в теплоак-1 кумулирующую емкость в подвале и нагревать пол и! жилое помещение. По утрам маломощный насос пода-! вал воду на крышу. В летний период система могла ра-1 ботать на охлаждение помещения, однако в каждом! конкретном случае применения такой системы требуют-! ся детальные проектные проработки.

Два других дома были построены в графстве Прин-1 ца Георга, в нескольких километрах от Вашингтона.! В одном из этих домов [24] были внесены некоторые! изменения в аккумуляторную и коллекторную системы,! испытанные в предыдущих домах. Главное изменение! состоит в том, что камни, окружающие горизонталь-! ный цилиндрический водяной бак-аккумулятор емко-1 стью 16,1 м3, в зимний период также могут нагреваться! через систему медных труб нагревателем, работающим!

на жидком топливе. Кроме того, через каменный акку­мулятор проходят две вытяжные трубы из парового котла, по которым в зимний период отводятся отрабо­танные газы.

Конструкции домов Томасона широко изучаются, и во многих новых проектах солнечных домов реализу­ются идеи, заимствованные из этих систем.

Солнечный дом «Солар-1» (проект Делаверского университета, США). «Солар-1» был построен в 1973 г. и представлял собой первый дом, в котором сочета-

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.5. Солнечный дом «Солар-1».

1~ гараж; 2 — солнечные коллекторы, обращенные к югу; 3 — холл; 4 — спальня; 5 — подвал.

лось тепловое и фотоэлектрическое преобразование сол­нечной энергии в одной и той же коллекторной систе­ме [25, 26]. Другой яркой отличительной чертой дома является попытка широкого использования теплоты плавления для теплового аккумулирования. Для пере­дачи тепла из коллекторов используется воздух, а меж — *У «холодной» и «горячей» аккумулирующими система­ми имеется тепловой насос. Основные идеи такого под — *°Да изложены в отчете [26], в котором отмечается, 7го Для применения в быту требуется энергия различ­ного качества — низкопотенциальная тепловая энергия

для отопления или кондиционирования воздуха, высоко — потенциальная тепловая энергия для горячего водо! снабжения, приготовления пищи и питания холодиль­ников, а также электрическая. энергия для освещения и питания бытовых электроприборов. Превращение од­ного вида энергии в другой всегда связано с потерями энергии, поэтому желательно обеспечить возможно большее разнообразие видов энергии при преобразова­нии солнечной энергии. Поскольку в начале 70-х годоз не было данных, необходимых для оптимизации подоб­ных систем, дом был спроектирован таким образом, чтобы максимально обеспечить возможность экспери­мента. Поперечное сечение дома показано на рис. 4.5. Главное одноэтажное жилое помещение состоит из го­стиной, двух спален, ванной!

__ ^ / J f> комнаты и кухни. В север-‘

Подпись:ной части Дома расположен; гараж. Поскольку дом был построен для того, чтобы получить эксплуатационные характеристики каждого элемента системы, а также оптимизировать систему и повысить эффективность тепловых и электрических плоских коллекторов, дом не был заселен. Подробное изучение характеристик всей системы с целью опти­мизировать отношение пло­щади коллектора к объему аккумулятора и объема ак­кумулятора к жилой площа­ди дома не было проведено.

Двадцать четыре коллек­тора, каждый размерам!? 1,2×2,43 м, были установле­ны на крыше, наклоненной под углом 45° к горизонта^ ли и обращенной на 4,5° к западу от южного направления. Три коллектора были заполнены солнечными элементами из сульфата кадя мия — сульфида меди CdS/Cu2S, изготовленными в пе-[ риод с 1968 г. по 1970 г. компанией «Клевит-ГолД

Корп».Сто четыре элемента соединялись последователь­но в батарею и в каждый коллектор устанавливались по три такие батареи. Электрическая мощность могла со­ставить примерно 30 Вт/м2 при максимальной интенсив­ности солнечного излучения (КПД около 3%). В прост­ранстве под солнечными элементами циркулировал воздух. Для улучшения теплоотдачи к воздуху исполь­зовались ребра. Естественная вентиляция в летние ме­сяцы оказалась почти достаточной для поддержания температуры солнечных элементов ниже максимально допустимого значения рабочей температуры (65° С). При температуре солнечных элементов 49—65° С и тем­пературе окружающей среды от —18 до +10° С тепло­вая эффективность работы коллектора составляла 50— 70%. Поперечное сечение коллектора показано на рис. 4.6. К июню 1975 г. было испытано 16 коллекторов различных типов. Все они имели одинаковое остекление и корпус, но отличались типом селективной поверхности, расположением и геометрией ребер. Следующим шагом в моделировании было использование дополнительного источника энергии, эквивалентного по мощности тепло­вому и электрическому коллектору, занимающему цели­ком всю крышу, эффективная площадь которой состав­ляет 57,6 м2. Исследовались также шесть вертикальных обращенных к югу тепловых воздушных коллекторов, каждый размерами 1,2X1,83 м, теплоприемные поверх­ности которых предполагалось первоначально выполнить из простых алюминиевых листов с черным селективным покрытием.

Теплоаккумулирующая система занимает относитель­но небольшой объем, приблизительно 6,12 м3, и состо­ит из двух внешних вертикальных контейнеров из пла­стика, в которых находится пентагидрат тиосульфата натрия Na2S203-5H20, имеющий температуру фазового перехода, равную 49° С. В центральный контейнер поме­щается эвтектика солей, главным образом декагидрат сульфата натрия Na2SO4-10H2O с температурой фазово­го перехода 12,8° С, уложенный в трубы диаметром 31,75 мм и длиной 1,83 м. Внешняя система является «горячим» аккумулятором, в то время как центральная труба является «холодным» аккумулятором. В обеих системах циклы сменяются совершенно независимо от системы солнечного отопления. Емкость этих аккумуля­торов достаточна, чтобы покрыть трехдневную отопи — 6—1240 81

РАЗРАБОТКИ, ВЫПОЛНЕННЫЕ В США

Рис. 4.7. Солнейный дом в Туксоне.

тельную нагрузку в зимний период или однодневную нагрузку на охлаждение в летний период.

Солнечный дом в Туксоне. Этот дом был построен в 1975 г. на основе проекта Ассоциации медной промыш­ленности [27]. Ассоциация объявила, что в противопо­ложность чисто экспериментальным зданиям он явля­ется первым «реальнцм» домом и согласно оценкам в нем за счет использования солнечного излучения удов­летворяется 100% отопительной нагрузки и до 75% нагрузки на охлаждение. Дом, почти целиком обеспе­чивающий себя необходимой энергией, был построен с целью продемонстрировать, что все основные детали и материалы, необходимые для его сооружения, имеются по конкурентоспособным ценам. Кроме того, особен­ность такого дома заключается в том, что его строи­тельство может быть осуществлено любым компетент­ным местным строительным подрядчиком. На рис. 4.7 показан этот дом с встроенным в крышу медным сол­нечным коллектором* имеющим двойное остекление. 82

Панель коллектора состоит из уложенных в корпус из фанеры медных листов размерами 1,2×2,44 м, с при­крепленными к ним прямоугольными медными труба­ми, по которым вода поступает в изолированный бак — аккумулятор емкостью 11,4 м3. Детальный экономиче­ский анализ еще не опубликован, но Ассоциация заяви­ла, что за счет экономии топлива встроенная в крышу система солнечных коллекторов окупится примерно за 10 лет.

Охлаждение обеспечивается двумя стандартными бромистолитиевыми абсорбционными агрегатами, пере­деланными так, чтобы использовать в качестве теплово­го источника нагретую солнцем воду. Абсорбционные установки такого типа для кондиционирования воздуха существуют уже в течение нескольких лет, но только недавно стало экономически выгодным их применение в жилых домах, поскольку они всегда обеспечивают без­аварийную работу в течение требуемого длительного пе­риода эксплуатации. В крышу также встроены кремние­вые фотоэлектрические элементы для удовлетворения различных незначительных энергетических потребностей, например таких, как низковольтное питание небольшо­го телевизора или кухонных часов. Кроме того, солнеч­ные элементы обеспечивают питание всей системы без­опасности дома в случае отказа электрической сети.

Крыша пристроенного флигеля, которая наклонена под углом 40° к горизонтали, обеспечивает солнечный подогрев воды в плавательном бассейне в весенний и осенний периоды. В летний период она используется в качестве простой охлаждающей системы, поскольку в ночные часы вода из бассейна может, стекая по кры­ше, излучать тепло в воздух, и за счет этого в дневные часы в бассейне поддерживается удовлетворительная температура. Крыша главного дома наклонена под уг­лом 27° к горизонтали, чтобы условия восприятия сол­нечной радиации в летний период были оптимальными и обеспечивали относительно большое количество энер­гии, необходимое для работы абсорбционной охлажда­ющей системы. Кроме того, защита от нежелательного поступления тепла в летний период осуществляется с помощью двух слоев специальных солнцезащитных сте­кол бронзового оттенка, вставленных в окна, располо­женные на стороне дома, обращенной к плавательному бассейну.

ГЛАВА ЧЕТВЕРТАЯ ПРИМЕНЕНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ. ДЛЯ ОТОПЛЕНИЯ

За последние 40 лет была неоднократно продемонст­рирована возможность по крайней мере частичного отопления зданий за счет солнечной- энергии. Критерии, положенные в основу решения проблемы собирания, ак­кумулирования и распределения солнечной энергии, впервые предложенные в 1949 г. Телкес [1], несколько изменились с тех пор, поскольку с ростом числа уста­новок накапливался практический опыт. Вначале осо­бое значение придавалось собиранию солнечной энер­гии в зимний период. В дальнейшем усилия были на­правлены на то, чтобы как можно более эффективно использовать диффузное излучение.

Целью инженерной практики всегда являлся надеж­ный, экономичный и простой коллектор, но анализ боль­шого числа солнечных установок показывает, что очень немногие из них могут удовлетворить всем трем крите­риям.

Огромные усилия в научно-исследовательской рабо­те были направлены на решение проблемы аккумулиро­вания солнечной энергии, получаемой в летнее время, Для использования ее в последующий зимний перпо Принцип применения очень большого, хорошо изолиро­ванного бака-аккумулятора, расположенного под зда­нием, был описан Хоттелем и Вертцем в 1942 г. [2], однако их замечание о том, что устройство оказалось в высшей степени неэкономичным, в значительной сте­пени повлияло на направление работ по исследованию аккумулирующих систем на протяжении следующих Двух десятилетий. В настоящее время более полно изу­чено влияние широты и радиационных климатических характеристик местности. Первоначально считалось, 5—1240 65

что с экономической точки зрения оправданно дел! запас энергии только на несколько дней, так что* полученную во время ясных зимних дней солнечні энергию можно было использовать в последующий! риод облачной погоды; во всяком случае в района;* значительным приходом солнечной радиации в зима* время это возможно. Однако в нескольких солнечна домах были достигнуты более длительные, ВПЛОТЬ!| нескольких месяцев, периоды хранения энергии, прпче) благодаря химическим методам аккумулирования, впа вые предложенным Телкес, можно существенно уме шить общий объем аккумулятора. Кроме того, Тел! обратила внимание на то, что нужна управляемая та морегулятором распределительная система, простая удобная в эксплуатации и не создающая жителям щ полнительных трудностей, а также на то, что пела допускать перегрева здания, особенно в условиях бья ро меняющейся погоды в весенне-осенние период и необходимо, чтобы система солнечного отопления 1 в коем случае не обогревала помещение летом; при эта требуется, чтобы температура в хорошо изолированна аккумуляторе для межсезонного хранения энергии j стигала максимально высокого уровня, возможного п] использовании. водяного или1 каменного аккумулятор Термин «солнечный дом» впервые стал хорошо I вестей в США в 30-е годы, когда начали примени большие обращенные к югу окна, чтобы косые лучи ни кого зимнего солнца могли проникать внутрь комна!

[3] . Было отмечено, что при этом удавалось эконом^ топливо в течение дня, однако запасать солнечную эна гию было невозможно, а в ночное время и в перноді облачной погоды тепловые потери были настолько й? лики, что экономия топлива в продолжение всего ОТОІІ тельного сезона оказывалась относительно малфі Чтобы получить количественные данные по экономь топлива за счет использования солнечной энергии, в Лі фаетском университете под руководством профессор’ Хатчинсона были построены два одинаковых домі [4, 5, 6]. Оба дома имели герметичное двойное остет ление оконных проемов, но обычный дом имел окн; стандартных размеров, в то время как южная сторон* солнечного дома представляла собой застекленную її верхность большой площади. Оба дома обогревались! помощью электричества и температурный режим в нй

был идентичным. Самым удивительным и неожиданным результатом, полученным в этих опытах, явилось то, что солнечному дому в течение испытательного периода де­кабрь-январь, потребовалось примерно на 16% боль­ше тепла, чем традиционному. Очевидно, что солнечные окна большей площади способствовали потере больше­го количества тепла в ночное время и в периоды об­лачной погоды. Если бы дома были заселены, то, веро­ятно, наличие ‘-.яжелых штор, задергивающихся на ночь, могло заметно изменить результаты.

С этого момента исследования по применению сол­нечного отопления непрерывно развивались. Работы, начатые Кэботом в Массачусетском технологическом институте (МТИ), привели в 1940 г. к строительству солнечного дома I, а в дальнейшем к созданию серии различных солнечных домов. Профессор Лёф из Коло­радского университета был первым экспериментатором, применившим солнечные воздухонагреватели с суммар­ной площадью коллектора, равной приблизительно од — •ИОЙ трети площади крыши, нагретый воздух из кото­рых направлялся либо непосредственно в комнаты, либо в теплоаккумулирующий бункер, заполненный галькой. Емкость этого аккумулятора соответствовала количест­ву энергии, необходимой для отопления дома в течение одних суток; в результате в течение первого сезона в 1946 г. было сэкономлено приблизительно 20% топли­ва, необходимого для обогрева дома [7, 8]. Спустя 30 лет, к началу 1976 г., число зданий с солнечным отоплением, которые были построены после 1940 г. или находились в процессе строительства, превысило 200. Отчет Шарклиффа, выпущенный в марте 1975 г. [9], содержал подробное описание более 100 таких зданий в США и около 20 в других странах. К 1976 г. в Вели­кобритании благодаря увеличивающейся поддержке официальных правительственных учреждений было по­строено около двадцати зданий с солнечным отопле­нием.

Различные жилые дома и другие здания, описание которых приведено в следующих разделах, выбраны так, чтобы показать историю развития солнечного отоп­ления. Описание начинается с разработок, выполнен­ных в США, где эти работы начались раньше, чем в других странах, далее даются примеры, относящиеся к нескольким другим странам.

АККУМУЛИРОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ

Аккумулирование тепловой энергии необходимо как при нагреве воды для бытовых нужд и отоплении поме­щений, так и для обеспечения высокотемпературных ре­жимов работы теплосилового оборудования. Имеются и другие области применения аккумулирующих устройств, как, например, растениеводство или технологические процессы в различных отраслях промышленности. В не­которых областях применения, в частности при охлаж­дении помещений в летние месяцы, было бы полезно, если бы аккумулятор мог также накапливать холод. Вы­бор аккумулирующего материала зависит от конкрет­ного назначения установки, и для применения в быту были разработаны водяные и галечные аккумулирующие системы. Солнечный воздухонагреватель в сочетании с аккумулятором галечного типа показан на рис. 3.23. Эта установка впервые была описана в 1974 г. [99] и представляет собой передвижное А-образное теплоизо­лированное устройство, содержащее промытую речную гальку. Воздухонагреватель расположен на обращенной к югу наклонной стене с навешенной на нее откидной от­ражающей поверхностью, которую можно использовать для закрывания коллектора ночью с целью уменьшения тепловых потерь. Исследования работы аккумуляторов со слоевой галечной насадкой проводились в течение нескольких лет в Австралии [100, 101, 102], а преиму­щества замены гальки хорошо адсорбирующим матери­алом, например силикагелем или активированным гли­ноземом, были рассмотрены Клоузом и Прайером [103].

Вода и камни являются типичными примерами мате-

Подпись: Рис. 3.24. Шариковая стена (без наполнителя).Подпись:Подпись:АККУМУЛИРОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ

риалов, которые аккумулируют энергию за счет тепло-Я емкости, но их применение ограничено из-за ее сравни-* тельно низких значений. Эффект теплоты плавления* (скрытой теплоты), которая поглощается материалом! при его переходе из твердого состояния в жидкое, соз*

Параметры материалов для аккумулирования 1 ГДж при повышении температуры на 20 °С

Параметры материалов для аккумулирования 1 ГДж

Материал

Теплоемкость,

кДж/(кг-К)

Теплота плав­ления, кДж/кг

І

ё й

Масса, кг

Относительная

масса

й

й

І

о

Относительный

объем

Камень

0,837

2242

59 737

16,4

26,6

11,691

Вода

4,187

1000

11 941

3,27

11,941

5,251

Материал, претер­певающий плав­ление

2,09

232,6

1602

3644

1

2,274

11

дает благоприятную возможность аккумулирования дан­ного количества тепла в пределах значительно меньше­го объема. Это иллюстрируется данными табл. 3.3. Таб­лица основана н, а данных, заимствованных из работы Телкес [104], где рассмотрены свойства широкого клас­са гидратов солей, которые могут быть использованы

Для аккумулирования тепла. Наименее дорогим и наи — © более доступным материалом является десятиводный сернокислый натрий Na2SO4-10H2O или глауберова соль с добавкой от 3 до 4% буры в качестве образующего агента для достижения полной кристаллизации. Эти процессы происходят при температуре около 30°С. Для
аккумулирования при высоких температурах (от 200 д^ 300 °С) рассматривались другие соли [105, 106], а так-; же гидратация неорганических окисей, в основном MgCI и СаО [107]. Было также проведено аналитическое ис| следование теплового взаимодействия между подземной аккумулирующей системой и окружающей почвой [108].

иКи из пенополистирола вдуваются в промежуток меж — Р двумя оконными стеклами, чтобы предотвратить по­тери тепла в ночное время зимой, или они могут быть 1!Слользованы с целью воспрепятствовать нежелатель — н0му притоку тепла в помещение летом. Эта система имеет преимущество по сравнению с откидными двер­цами или ставнями.

Подпись: Рис. 3.25. Шариковая стена (с наполнителем).

Использование обогреваемого дома в качестве аккумуі лятора энергии хорошо известно, но первоначальная! идея сохранения тепла внутри дома, предложенная Зо-| унвёком под названием шариковой стены, была разраї ботана Веером [109]. Такая стена показана на рис. 3.24] (без наполнения) и на рис. 3.25 (с наполнителем). Ша-І 64

МЕТОДЫ ИСПЫТАНИЙ

С увеличением числа новых солнечных нагревателей, появившихся в конце 70-х годов, очень важно было при­нять в международном масштабе стандартный метод их испытаний. Первой страной, установившей националь-1 ный стандарт в 1966 г., был Израиль [91]. Этому шагу предшествовали эксперименты, выполненные в нацио­нальной физической лаборатории [92]. В недавней рабо­те Тейбора [93] приводится методика испытаний, ос-| нованная на уравнении, которое по существу представ­ляет собой уравнение (3.2), то есть модифицированное уравнение Хоттеля — Уиллера — Блиса. Предложенный Тейбором метод испытаний требует последовательного,^ соединения до четырех коллекторов одной серии. В ЛЮ — J бой момент времени интенсивность солнечной радиации и расход теплоносителя одинаковы для всех коллекто-3 ров, так что в результате одного опыта можно получить! несколько точек характеристики, аналогичной любой из! кривых рис. 3.22. Данный метод предусматривает про-| ведение испытаний в ясную, почти безветренную погоду. Расчет обычного плоского коллектора показывает, что повышение скорости ветра от 0 до 4,7 м/с обусловливает снижение его КПД на 0,5% при ГСр — ГоКр=4,5 °С, на : 6,5% при Гер Гокр— 26,7 °С и на 19,5% при Тср —

—7окр=48,9°С. В Австралии была предложена нелиней­ная математическая модель, учитывающая влияние ско-3 рости ветра [94].

Проект стандартизации испытаний как солнечных1 коллекторов [95]. так и теплоаккумулирующих устройств [96] был разработан в США. Он также основан на; уравнении (3.2) и детально определяет методы измере — .j ний различных параметров, а именно температуры, дав — ления, расхода и интенсивности солнечной радиации. | Для построения характеристики любого коллектора ре-1 комендуется иметь по крайней мере четыре эксперимен­тальных точки при значениях ГСр — Гокр, равных 10, ЗО, і 60

50 и 70 °С. Применение солнечного имитатора или ис­кусственного солнца позволяет проводить испытания коллектора при стандартных значениях температуры ок­ружающей среды, скорости ветра и интенсивности пада­ющего излучения. Результаты определения КПД коллек­тора в опытах с имитатором, проводившихся в США [97, 98], хорошо согласуются с результатами натурных испытаний. Применение солнечного имитатора входит в программу исследований Кардиффского университета Великобритании. В странах, где приход солнечной ра­диации резко колеблется в течение дня, имитаторы мо­гут играть важную роль в технике испытаний.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ КОЛЛЕКТОРОВ

Соотношение (3:2), полученное из уравнения Хот — теля — Уиллера — Блиса, определяет общую тепловую эффективность коллектора и может быть использовано

для сравнения характеристик коллекторов различного типа. Зависимость КПД коллектора от параметра (Гср—

— Тжр) G~[2] для четырнадцати различных типов коллек-3

тора по данным, опубликованным в 1976 г., показана на] рис. 3.22. Вероятно, что такая форма представления дан-^ ных будет иметь все большее значение, поскольку во всех странах вводятся национальные стандарты, регла­ментирующие характеристики коллектора.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ КОЛЛЕКТОРОВ

Рис. 3.22. КПД солнечных коллекторов различного типа.

У — струйный коллектор; 2 — коллектор с тепловой трубой; 3 и 4 — коллекторы •: Хейвуда с одинарным и двойным остеклением соответственно; 5 — коллектор, j обеспечивающий небольшое повышение температуры; 6 — коллектор фирмы «Ханиуэлл»(два просветляющих покрытия, селективный); 7 — коллектор с теп-] ловой ловушкой; 8 — воздухонагреватели конструкции Лефа и Хейвуда; 9 — вакуумированный трубчатый коллектор фирмы «Филипс»; 10 — вакуумирован — ный трубчатый коллектор фирмы «Оуэнс-Иллинойс»; 11 — коллектор фирмы: «Ханиуэлл» с двойным остеклением; 12 — коллектор фирмы «Ханиуэлл* с двойным остеклением и селективной поглощающей поверхностью; УЗ—кол­лектор типа РРС с двойным остеклением и селективным покрытием.

Характеристики всех типов коллектора, кроме двух простейших —коллектора для небольшого повышения температуры [40] и струйного [46, 87],—проходят через прямоугольник, ограниченный значениями КПД от 50 до 70% и значениями параметра (Тср — ?0кр) G~] от 58

0,03 до 0,05. Следовательно, при интенсивности падаю­щей радиации более 500 Вт/м2 все эти нагреватели бу­дут иметь почти одинаковую производительность при нагреве рабочей жидкости до температуры, на 15— 30 °С превышающей температуру окружающей среды. Указанный диапазон температур наиболее характерен для установок в коммунально-бытовой сфере. Коллек­тор струйного типа и коллектор для небольшого повы­шения температуры не приемлемы в качестве источника тепла при высокой температуре, поскольку максимальна возможное повышение температуры, по-видимому, со­ставляет около 60°С. Обладающий хорошими эксплуата­ционными качествами промышленный коллектор плос­кого типа фирмы «Ханиуэлл» с двумя просветляющими стеклянными покрытиями и селективной поверхностью поглощающей пластины [88] и более простой по кон­струкции коллектор с тепловой ловушкой [46] имеют практически одинаковый КПД, хотя характеристики последнего следовало бы оценить в условиях эксплуата­ции. Судя по первым опубликованным результатам, к концу 70-х | годов можно ожидать значительного улуч­шения характеристик составного параболического кон­центратора [89] и коллектора с тепловой трубой [74]. Оба эти коллектора интенсивно разрабатываются в рам­ках научно-исследовательских программ США. Вакуу — мированные трубчатые коллекторы [24, 69] не только прекрасно работают в условиях хорошей радиации, обес­печивая высокие перепады температур, но и при плохой радиации имеют хорошие характеристики. Результаты работы Хейвуда [3] по определению характеристик кол­лектора с двойным и одинарным остеклением могут быть использованы в качестве эталонных для всех прос­тых плоских коллекторов, тогда как коллектор PPG [90] принадлежит к числу более совершенных, выпус­каемых промышленностью устройств. Простые воз­духонагреватели [3, 81] имеют относительно хорошие характеристики по сравнению с обычными водонагрева­телями.

Хотя кривые на рис. 3.22 основаны на уравнении со многими упрощающими допущениями, такая форма представления данных позволяет объективно сравнивать между собой коллекторы, испытанные в разных районах при весьма различных уровнях падающего солнечного излучения. Однако она не дает возможности оценить

или сравнить экономические показатели, и коллекторы с весьма близкими тепловыми характеристиками могут по меньшей мере вдвое отличаться по стоимости. Кроме того, данный анализ не позволяет определить еще один важный с практической точки зрения параметр — рас — j четный срок службы коллектора.

ВОЗДУХОНАГРЕВАТЕЛИ

Количество научных исследований и конструкторс­ких работ по солнечным воздухонагревателям. [7, 78] значительно меньше, чем по системам водонагрева, хотя есть много областей применения, где более целесообраз­но использовать воздух в качестве теплоносителя, на­пример для сушки сельскохозяйственных продуктов на небольших широтах или для отопления помещений на более высоких широтах. Воздухонагреватели имеют три преимущества, заслуживающих особого внимания:

воздух не замерзает;

последствия утечки воздуха значительно менее серь­езны, чем последствия утечки воды;

проблема коррозии в системах из разнородных ме­таллов и аккумуляторах практически отсутствует.

Однако физические свойства воздуха в данном слуг чае менее благоприятны, чем воды. Его плотность и теплоемкость крайне низки, а сечения каналов в воздуш­ных системах гораздо больше, чем у водяных трубопро­водов.

В простых воздухонагревателях можно использовать почти любую поверхность нагрева, которая может быть окрашена в черный цвет. На рис. 3.20 показаны три ос­новных типа такого нагревателя с одинарной прозрач­ной изоляцией. В коллекторе на рис. 3.20,а воздух дви­жется в промежутке между прозрачным покрытием и поглощающей пластиной. В нагревателе на рис. 3.20,6 воздушный зазор между прозрачным покрытием и по­глощающей пластиной герметизирован для уменьшения конвективного теплообмена, а канал находится за по­глощающей пластиной. В нагревателе на рис. 3.20,в по­токи воздуха либо разделены, либо с целью предвари­тельного подогрева воздух подается в наружный канал,

а затем проходит по внутреннему каналу. Прекрасным примером солнечного воздухонагревателя, сделанного из простых материалов, является установка в Гуджарате с площадью коллектора более 500 м2 [79], где воздух проходит через окрашенную в черный цвет мелкую ме­таллическую стружку, представляющую собой отходы металлорежущего производства. Коллектор с двойным остеклением имеет расчетный КПД около 45% при тем­пературе, на 65 °С превышающей температуру окружаю­щей среды. В ранней работе Лёфа [80] исследовался

Подпись:Подпись: 1 — наружное покрытие; 2 — воздушный канал; 3 — пластина коллектора; 4 — теплоизоляция; 5 —наружный воздушный канал; 6 — внутренний воздушный І канал; 7 — изолированный воздушный слой.ВОЗДУХОНАГРЕВАТЕЛИ1 5 63

7-

______ хл__

г*

Шк

коллектор с перекрывающими друг друга черными стек — лянными пластинами, накрытыми сверху одним, двумя і или тремя слоями прозрачной изоляции. Впоследствии такие коллекторы были установлены на крыше солнеч — : ного дома в Колорадо и его энергетические показатели за отопительный сезон 1959—1960 гг. были опубликова-1 ны в печати [81]. После 16-летнего периода практичес­ки безаварийной работы эта система была исследована j вновь в 1976—1977 гг. [82]. Важные цаучно-исследова-1 тельские работы по солнечным воздухонагревателям проводились также в Австралии [61, 83], где в начале. 60-х годов впервые были применены селективные по­верхности с V-образной конфигурацией канавок (см. рис. 3.2, и).

Наряду с применением селективных поверхностей повышение эффективности может быть достигнуто пу­тем регулирования скорости воздуха и использования двухходовой схемы отвода тепла [84], предусматриваю­щей движение воздуха между двумя стеклянными по-1 крытиями обычного в других отношениях двухстеколь­ного коллектора. КПД данной двухходовой системы оказался на 17% больше по сравнению с обычной схе-1 мой отвода тепла. В других системах [85] для улучше — 56

ния теплопередачи используются ребристые поверхнос­ти различного типа (см. рис. 3.2, з). В работе [86] рас­смотрена попытка применения сотовых структур в соче­тании с пористой подложкой. Принципиальная схема v включения воздушного коллектора в систему отопления и охлаждения, заимствованная из работы Лёфа [78], показана на рис. 3.21. В данном случае используется ак­кумулятор галечного типа с насадкой из обычной,

ВОЗДУХОНАГРЕВАТЕЛИ

Рис. 3.21. Принципиальная схема воздушного солнечного отопления. 1 — солнечный коллектор; 2 — вентилятор и блок управления; 3 — вентиль на­правления потока; 4 — аккумулятор.

тщательно отобранной гальки. С помощью вентилятора и блока управления можно реализовать любой из сле­дующих режимов работы:

обогрев дома непосредственно от коллектора; обогрев дома от аккумулятора; аккумулирование тепла из коллектора; охлаждение аккумулятора холодным наружным воз­духом;

охлаждение дома от аккумулятора.

Двойное применение аккумулятора как для охлаж­дения летом, так и для обогрева зимой является допол­нительным положительным фактором. Заметим, что на схеме не показан вспомогательный источник энергии.

ЦИЛИНДРИЧЕСКАЯ СИСТЕМА КОЛЛЕКТОР — АККУМУЛЯТОР

Подпись: Рис. 3.19. Цилиндрический солнечный коллектор, совмещенный с баком-аккумулятором. / — внутреннее прозрачное покрытие; 2 — наружное прозрачное покрытие; Зй цилиндрический аккумулятор.

Автономный цилиндрический солнечный коллектор, совмещенный с баком-аккумулятором, был разработан в Новой Зеландии Винкзом [76, 77]. Принцип работы

показан на рис. 3.19. Когда солнечное излучение дости­гает черной поверхности коллектора, вода в узком коль­цевом зазоре поднимается, а более холодная водіа вну^ ри аккумулятора опускается, т. е. отвод тепла осущесг 54

вляется путем естественной циркуляции. Последние ре­зультаты испытаний [77] показали, что по сравнению с плоским коллектором данная система имеет лучшие ха­рактеристики, если их определять по фактической пло­щади наружного цилиндра. Если же принять во внима­ние площадь, необходимую для размещения цилиндров на расстоянии друг от друга, то эффективность работы плоского и цилиндрического коллекторов будет практи­чески одинакова.

НАГРЕВАТЕЛЬ С ПЛАВАЮЩИМ ПЕРЕКРЫТИЕМ

Идея этой разработки [75] заключалась в том, что вследствие диффузного характера солнечной радиации Целесообразно, даже в ущерб повышению эффективнос­ти, создать простой, дешевый и удобный в монтаже кол­лектор. Однако эксперименты показали, что его эффек­тивность сравнима с эффективностью других горизон­тальных плоских коллекторов. Основные элементы кон­струкции показаны на рис. 3.18. Плавающее перекрытие

представляет собой слой изоляции, предпочтительно из пеностекла, расположенный н, а поверхности аккумуля­тора горячей воды. Солнечная энергия поглощается во­дой, которая в виде тонкой пленки протекает сверху по изоляции. Сжимающая пластина, которая может быть выполнена из прозрачного или черного стекла, пласт­массы или металла, лежит непосредственно на поверх-

НАГРЕВАТЕЛЬ С ПЛАВАЮЩИМ ПЕРЕКРЫТИЕМРис. 3.18. Нагреватель с плаваю­щим перекрытием, /—прозрачная изоляция; 2 — металли­ческая пластина; 3 — сжатая водяная пленка между пластиной и перекры­тием; 4 — аккумулятор горячей воды; 5 —плавающее перекрытие; 6 — насос.

ности водяной пленки. После предварительных испыта­ний нагревателя квадратной формы площадью 0,836 м2 был успешно разработан промышленный вариант уста­новки площадью 46,5 м2. На небольших широтах эта установка может использоваться в качестве источника тепла при достаточно низкой температуре, а на более высоких широтах в комбинации с долговременным ак­кумулирующим устройством.

КОЛЛЕКТОР С ТЕПЛОВОЙ ТРУБОЙ

Основные элементы тепловой трубы показаны на рис. 3.17. Небольшое количество жидкости, которая на! ходится в равновесии со своим насыщенным паром, за! паяно внутри трубы. При подведении тепла к одному ия концов тепловой трубы жидкость испаряется, а избытом пара конденсируется на другом, необогреваемом конца трубы. Конденсат возвращается к обогреваемому конця трубы под действием капиллярных сил. В некоторых солі нечных нагревательных установках возврат конденсата может осуществляться под действием гравитационным сил. Поскольку процесс испарения и конденсации проис!

ходит при постоянном давлении и соответственно при постоянной рабочей температуре, то тепловая труба способна передавать тепло при очень малых разностях температур внутри трубы. Существует неизбежное сни­жение эффективности при переносе тепла от тепловой трубы к вторичному контуру. Важная программа иссле­дований режимов работы коллектора с тепловой трубой

КОЛЛЕКТОР С ТЕПЛОВОЙ ТРУБОЙ

Рис. 3.17. Коллектор, работающий на принципе тепловой трубы.

1 — капиллярная структура.

выполнялась в США с 1974 г. [72] . В Нидерландах в 1975 г. была проведена работа, представленная Фрэн — кином [73], который особое внимание уделил изучению скорости изменения тепловых характеристик при изме­нении солнечной радиации. Другое преимущество теп­ловой трубы состоит в том, что она может содержать жидкость с более низкой, чем у воды, температурой замерзания. Коллектор с тепловой трубой был также представлен на конкурс Ассоциации развития медной промышленности в Великобритании [60]. Предвари­тельные рабочие характеристики, указанные заводом — изготовителем [74], были весьма разочаровывающими; так, например, общий КПД оказался несколько хуже, чем у одностекольного неселективного плоского коллек­тора, испытанного Хейвудом [3] в 50-х годах.