Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

 

Что дает применение солнечных установок в умеренных широтах?

Солнечная установка может экономить от 25 до 75 % расходов на топливо.

Может ли солнечная установка давать полезную теплоту при отрицательных температурах наружного воздуха и при плотной облачности?

Да, может, но количество полезной энергии уменьша­ется и зависит от прихода солнечной энергии и коэффи­циента теплопотерь коллектора. Плоский коллектор спо­собен улавливать как прямое, так и рассеянное солнеч­ное излучение. При пасмурной погоде прямое излучение отсутствует, но коллектор будет улавливать рассеянное излучение. Иное дело с фокусирующими коллекторами, которые улавливают только прямое солнечное излучение и при отсутствии прямых солнечных лучей не дают по­лезной теплоты.

Ухудшается ли внешний вид дома?

В большинстве случаев солнечные коллекторы прида* ют оригинальный и привлекательный вид дому. А вот ар­хитектурный облик старинных домов не следует нару­шать, и размещать солнечные коллекторы следует так, чтобы они не бросались в глаза.

Какая требуется площадь в доме для размещения оборудования гелиоустановки?

В доме размещают аккумулятор теплоты и вспомо­гательное оборудование. Для солнечного водонагревате­ля требуется 1 м2 площади, для установки отопления и горячего водоснабжения — 4 м2. Для совершенной гелио­установки требуется аккумулятор теплоты объемом 5 м3, который может быть размещен в доме или под ним.

Какие дополнительные строительные капитальные затраты возникают при монтаже гелиоустановки на существующем доме?

Современная технология позволяет устанавливать солнечные коллекторы на существующем доме без про­блем. Затраты при этом могут быть различными в зави­симости от архитектуры дома и других особенностей,

Какие преимущества дает совмещение солнечных коллекторов є крышей дома?

Уменьшается общая стоимость дома и иноверного оборудования. При качественном монтаже установки эксплуатационные качества крыши не ухудшаются,

Каков срок службы солнечных установок?

Это зависит от многих факторов, в том числе от ка­чества изготовления и монтажа установки, включая пра­вильный выбор материалов для изготовления солнечных коллекторов, аккумуляторов теплоты, трубопроводов, качества уплотнений и т. п. Важное значение имеет вы­бор теплоносителя и применение соответствующих анти­коррозионных добавок, соблюдение требуемых скоростей потока в трубах, предотвращение попадания кислорода воздуха, вызывающего коррозию. Срок службы также зависит от предотвращения замерзания теплоносителя в трубопроводах и других элементах оборудования, под­верженных воздействия» наружного воздуха. Некоторые материалы, в частности полимерные пленки, быстро ста­реют под действием ультрафиолетового излучения. Ос­новной элемент гелиоустановки — солнечный коллек­тор — обычно рассчитан на 15—20 лет работы при усло­вии правильного монтажа и эксплуатации. Баки-аккуму­ляторы закрытого типа должны иметь катодную защиту от коррозии и могут эксплуатироваться в течение 20 лет. Аккумуляторы теплоты, работающие в условиях атмос­ферного давления и изготовленные из пластиков, армиро­ванных стекловолокном, могут служить длительное вре­мя при соблюдении правил эксплуатации. До сих пор эксплуатируются солнечные дома, построенные 30 и бо­лее лет назад.

Срок службы водонагревателей с естественной цирку­ляцией теплоносителя и компактных водонагревателей составляет 10—15 лет. При высоком солесодержании воды и вообще ее низком качестве срок службы коллектора мо­жет быть весьма непродолжительным из-за возможных повреждений, особенно в местах соединений — и уплотне­ний. Прозрачные пластмассы и полимерные пленки ста* реют по истечении 7—10 лет.

НЕКОТОРГЕ ВОПРОСЫ ЭКСПЛУАТАЦИИ И ИСПОЛЬЗОВАНИЯ СОЛНЕЧНЫХ УСТАНОВОК

В каких районах можно использовать солнечные установки?

Практически в любом районе. Сезонные установки горячего водоснабжения можно использовать в различ­ных местах, но чем больше широта местности, тем коро­че период использования установки в год, а следователь­но, хуже показатель экономической эффективности. Сол­нечные установки отопления лучше всего подходят для районов с продолжительным отопительным периодом, но с достаточно высокой интенсивностью солнечной радиа­ции и умеренной температурой наружного воздуха в отопительный период.

МОНТАЖ И ЭКСПЛУАТАЦИЯ СОЛНЕЧНЫХ УСТАНОВОК

При монтаже и установке гелиосистем теплоснабже­ния рекомендуется следующая последовательность вы­полнения работ.

I. Изготовление, монтаж и установка жидкостной гелиосистемы теплоснабжения.

Установка водяного аккумулятора теплоты включает следующие этапы:

строительство основания, фундамента или опорной конструкции — при выполнении бетонных работ на залив­ке фундамента здания;

установку бака-аккумулятора; монтаж обвязочнцх трубопроводов; заполнение системы водой и проведение испытаний на плотность;

монтаж тепловой изоляции.

, Установка коллектора солнечной энергии включает в себя:

изготовление и установку опорной конструкции — пои изготовлении каркаса, рамы, стропил и других строи­тельных элементов крыши дома;

монтаж опорной конструкции и установку солнечного коллектора на крыше;

монтаж соединительных трубопроводов; испытание контура солнечного коллектора на плот­ность;

проведение теплоизоляционных работ на трубопро­водах.

Установка теплообменников и дополнительного ис­точника энергии включает следующие этапы: монтаж трубопроводов, насосов и арматуры; испытание трубопроводов на плотность; проведение теплоизоляционных работ на трубопро­водах;

установку дополнительного источника энергии. Монтаж установки горячего водоснабжения включает следующие этапы:

Подпись: 19313—675

монтаж теплообменника и трубопроводов для пред­варительного подогрева воды; испытание на плотность; проведение теплоизоляционных работ; монтаж баков-аккумуляторов.

Установка приборов и датчиков системы управления состоит из:

установки датчиков и приборов управления и регу­лирования по месту;

монтажа щита управления с приборами.

II. Изготовление, монтаж и установка воздушных гелиосистем теплоснабжения.

Установка галечного аккумулятора теплоты включа­ет этапы:

изготовление основания и опорной конструкции; изготовление бункера (контейнера) — до установки крыши над помещением или перекрытия над подвалом, в котором устанавливается аккумулятор;

заполнение бункера твердыми частицами гальки, гра­нита и т. п.;

монтаж воздуховодов; проведение изоляционных работ.

Монтаж и установка солнечного коллектора, системы подогрева воды, вспомогательного оборудования и при­боров выполняются в той же последовательности, что и для жидкостных гелиосистем.

При монтаже трубопроводов необходимо выполняв следующие правила:

для уменьшения тепловых потерь и гидравлического сопротивления длина основных трубопроводов и ответв­лений должна быть минимально возможной, а ответвле­ния должны иметь одинаковый диаметр, чтобы обеспе­чивалось равномерное распределение теплоносителя меж­ду отдельными модулями коллектора;

следует использовать минимальное количество сое­динительных деталей, арматуры и т. п.; колена и поворо­ты трубопроводов необходимо изготовлять с помощью гибочного станка;

для предотвращения контактной коррозии при уста­новке арматуры из медных сплавов на стальных трубо­проводах необходимо использовать соединительные эле­менты из диэлектрических Материалов;

на длинных прямых участках трубопроводов должны

быть предусмотрены компенсаторы температурных уд­линений и соответствующие опоры;

в самых верхних точках системы должны быть уста­новлены воздушники и должен быть предусмотрен слив жидкости из нижних точек системы.

При использовании в контуре коллектора антифриза должен быть предусмотрен расширительный бак, емкость которого составляет приблизительно 1—2 % емкости контура, включая сам коллектор.

ПРОСТЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ ДЛЯ ПРИУСАДЕБНЫХ И ДАЧНЫХ УЧАСТКОВ

Самый простой солнечный водонагреватель можно сделать, используя черный пластмассовый шланг, кото­рый для этого сворачивается в виде спирали в бухту и укладывается на южный скат наклонной крыши.(рис. 87). Один конец шланга надевается на водопроводный кран, а второй соединяется с душем. Необходимую лу — чевоспринимающую поверхность и емкость этого водо­нагревателя можно обеспечить, выбрав соответствующую длину шланга, а регулируя краном расход воды, можно

image120

Рис. 87. Простой водонагрева­тель из черного полиэтиленово­го шланга:

 

 

Рис. 88. Пленочный водонагрева-
тель:

/ — черяая пленка; 2 — прозрачная
пленка; 3 — штуцер для воды; 4 —
теплоизоляция; 5 — прозрачная плен-
ка; 6, 7 —воздушный клапав

получить требуемую температуру горячей воды. Кольца бухты должны быть ослаблены, и для уменьшения теп­ловых потерь сверху можно натянуть прозрачную поли­мерную пленку, зафиксировав ее на высоте 15—25 мм от шланга с помощью деревянной рамы’ (ящика)} снизу же под бухту шланга следует подложить металлический лист или фольгу с высокой отражательной способностью или хотя бы окрашенный в белый цвет лист фанеры. Лучевоспринимающая поверхность шланга длиной 100 м, внутренним диаметром 16 мм при толщине стенки 2 мм составляет 2 м2, а его емкость 0,02 м3. Для того чтобы нагреть 1 кг воды от 15 до 40 °С, требуется 105 кДж теп­лоты.

В летний период в Подмосковье на 1 м2 лучеприем — ной поверхности в день поступает в среднем 19,5 МДж солнечной энергии. При КПД 0,3 количество получаемой

полезной тенлоты с площади 2 м2 за день составит id,5X Х0,3-2= 11,7МДж. Задень можно получить 110кг. воды с температурой 40 °С. Это эквивалентно 5,5 полной емко­сти шланга. Нагретую воду можно собирать в теплоизо­лированный резервуар, из которого затем вода будет ис­пользоваться для ванны, душа и т. п. При продолжи­тельности инсоляции 8,5 ч в день среднечасовой расход воды равен 13 кг/ч, или 1,8 г/с на 1м2 площади поглоща­ющей поверхности. Скорость воды равна 0,018 м/с.

Нетрудно изготовить водонагреватель из черной и прозрачной прочной полимерной пленки в виде мешка, дно которого выполнено из черной пленки, верхняя вы­пуклая поверхность — из прозрачной пленки, а между ними находится вода (рис. 88). Заполнение и опорожнение водонагревателя производится через штуцер соответст­венно утром и вечером. Для уменьшения тепловых по­терь водонагреватель может быть снабжен теплоизоля­цией снизу и прозрачной изоляцией. Водонагреватель переносной, и его можно использовать дома, на даче, на пляже, в туристских походах и т. п. Для получения го­рячей воды достаточно поместить его на солнце, напри­мер на крыше автомобиля.

Выполним прикидочный расчет. количества горячей’ воды, которое можно получить за день в южных районах страны. Примем, что в летний период поступление сол­нечной энергии составляет в среднем 21,9 МДж/м2 вдень (для условий, Алма-Аты, май — август) и КПД водона­гревателя равен 0,4. Тогда полезное количество теплоты доставит Qn=8,76 МДж/м2 в день. При разности тем­ператур горячей и холодной воды Af=*45— 15=30’С количество горячей воды, получаемой с 1 и2 площади водонагревателя, составит G ** Qul(cpAt) — 8,75: (4Д9Х ХІО-^ЗО) = 70 кг в день. Следовательно, емкость водо­нагревателя должна быть равна 70 л, а толщина слоя воды 70 мм.

Без сомнения, описанные водонагреватели являются весьма примитивными устройствами, и их эффективность довольно низкая. Значительно эффективнее компактные водонагреватели, достаточно подробно описанные в § 8 (см. рис. 25—27). Отличаясь простым устройством и низкой стоимостью, они обладают достаточно высоким КПД. Возможны различные модификация указанных конструкций. В частности, водонагреватель, показанный на рис. 25, может содержать несколько цилиндрических

емкостей (до шести — восьми) в едином корпусе. Во­донагреватель, показанный на рис. 27, не обязательно должен иметь тепловые трубы. Вместо них может ис­пользоваться обычный трубчатый абсорбер типа «труба в листе» и т. п. Верхний и нижний гидравлические кол­лекторы абсорбера соединяются трубками с баком-ак­кумулятором горячей воды, который имеет горизонталь­ное расположение и соединен также с баком холодной

image121

Подпись: Рис. 89. Объединение гелиоус-тановки и топливного водона-гревателя:

1 — гелиоводонагреватель с естествен­ной циркуляцией ВОДЫ; 2 — напорный бак с поплавковым клапаном для под­вода воды,’ S — топливный водонагре­ватель; 4 — потребители горячей воды; 5 — холодная вода; 6 — топливо (газ)

Рис. 90. Гелиотеплица е земляной насыпью:

1 — остекление; 2—насынь; 3 — северная стена; 4 — канал для воздуха воды небольшой емкости. Все эти конструктивные эле­менты объединяются в единый компактный водонагре­ватель, аналогичный тому, который представлен на рис. 27.

Солнечный водонагреватель может соединяться с обычным топливным водонагревателем по схеме, пока­занной на рис. 89.

При разработке и организации производства солнеч­ных водонагревательных установок необходимо учиты­вать рекомендации по повышению эффективности кол­лекторов, изложенные в §5, а также те прогрессивные технологии, которые описаны в данной главе. >

На приусадебных и дачных участках солнечные, уста­новки должны найти довольно широкое * применение.

Кроме описанных выше простых водонагревателей мож­но рекомендовать гелиотеплицы, показанные на рис. 90— 92, которые нетрудно построить непосредственно на уча­стке. При этом следует иметь в виду, что эффективность теплицы повышается при защите с помощью слоя тепло­изоляции северной стенки, аккумулировании теплоты в грунте и подогреве воздуха или воды в солнечном кол­лекторе. Вода, нагретая в коллекторе, циркулирует в трубопроводах, проложенных в грунте. Для этой цели используются пластмассовые трубы, не поддающиеся коррозии. Простая конструкция теплицы с пассивным ис-

image123Рис. 91. Гелиотеплица с
подпочвенным галечным ак-
кумулятором теплоты:

1 — теплица; 2 — аккумулятор

теплоты; 3 — канал для цирку> ляции воздуха;.’* -*■ вентилятор

пользованием солнечной энергии показана на рис. 90. Она имеет развитую остекленную поверхность с южной стороны и засыпанную грунтом стенку с северной сторо­ны. Земляная насыпь служит одновременно теплоизоля­цией и аккумулятором теплоты. Для циркуляции возду­ха в насыпи предусмотрены каналы. Днем происходит нагрев этого слоя земли, а ночью от него теплота отво­дится воздухом, поступающим в теплицу.

В гелиотеплице (рис. 91) с прозрачной южной сто­роной и теплоизолированной северной стеной целесооб­разно применять подпочвенный Галечный аккумулятор. Для лучшей циркуляции воздуха следует использовать вентилятор, установленный в воздуховоде. Для аккуму­лирования теплоты требуется 0,5—0,9 м3 гальки (щебня, камня) на 1 м2 площади остекленной южной поверхно­сти.

Потери теплоты гелйбтеплицы в ночной период зна­чительны, и температура воздуха в теплице может упасть ниже допустимого предела в 5 °С. Можно существенно

снизить теплопотери путем применения подвижной теп­лоизоляции. Пример конструктивного исполнения тепли­цы с поворачивающейся шарнирно закрепленной тепло­изоляционной панелью показан на рис. 92. В ночное время панель поворачивается и в горизонтальном положении защищает растения от переохлаждения. Для большего эффекта внутренняя поверхность панели дол-

image124

Рис. 92. Гелиотеплица с подвижной теплозащитой г

І—северная стена; 2—неподвижная теплоизоляция стенки; 3— прозрачная изоляции; 4 — клапан Для вентиляции; 5 — подвижная теплоизоляция; S — теп­лоизолированный фундамент; 7 — галечный аккумулятор теплоты; 3 — бочки

с водой

жна быть окрашена в белый цвет. В этой гелиотеплице используются два тепловых аккумулятора — галечный и водяной. Галька засыпается в продольный канал в по­лу, проходящий по всей длине теплицы. Бочки с водой помещаются на полу У теплоизолированной стены. Мож­но также использовать канистры с парафином — в этом случае требуется меньший объем теплоаккумулирующего материала.. Вместо жесткой теплоизолирующей панели можно использовать горизонтальную штору, движущую­ся с помощью вращающихся опорных роликов.

Гелиотеплицу можно скомбинировать с другими по­лезными сооружениями. Например, внутри теплицы

можно разместить пруд для разведения рыб (рис. 93) или над ней устроить солнечный опреснитель.

При строительстве гелиотеплицы возникает ряд прак­тических вопросов. В частности, важное значение имеют такие вопросы, как выбор места для строительства теп­лицы, ее ориентации, угла наклона светопрозрачной по* верхностй. Теплицу надо размещать на ровном солнеч­ном месте, не затеняемом зданием или деревьями. Ни­зинные места, где часто бывают туманы и заморозки, не

5

image125

Рис. 93. Гелиотенлнца с прудом для разведения рыб:

/ — теплица; 2 — пруд; 3 — строительная конструкция; 4 — фундамент; 5 — вентиляционный клапан; £ —грядки с рассадой

пригодны для теплиц. Нельзя располагать теплицу в промежутке между двумя домами или между домом и са­раем, так как там возникает сильный поток воздуха. С северной стороны теплица должна быть защищена от ветров плотным забором или высоким кустарником — Устройство фундамента показано на рис. 94. Наруж­ная поверхность фундамента должна быть покрыта сло­ем теплоизоляции толщиной 30—40 мм (пенополисти­рол) . Теплоизоляция должна быть защищена от влаги земли битумным покрытием, рубероидом, полимерной пленкой. Если возможно попадание дождевой воды, то перед фундаментом вырывают ров и заполняют его круп­ной щебенкой, а на дно кладут дренажную трубу — ке­рамическую или пластмассовую — диаметром 50-^-200 мм.

Влага земли всегда проникает из крупнозернистого слоя в мелкозернистый, поэтому дно теплицы следует выкла­дывать из крупного щебня. Более надежную защиту от влаги обеспечивает многослойная структура, состоящая из слоев щебня, теплоизоляции и бетона со слоем поли­винилхлоридной пленки для защиты теплоизоляции от влаги. Особенно хорошая влагозащйта требуется для теплицы, пристроенной к жилому дому. Кроме описанной

image126

Рис. 94. Фундамент гелиотеплицы с теплоизоляцией (а) и влагоза­шитой (б):

У—фундамент; 2 теплоизоляция; 3 — рубероид; 4 — пленка или металличес­кий лист; S — щебень; 6 — дренажная труба; 7 — слой тощего бетона; 8 — плен­ка для вл а г оэ а щиты; 9 — пол; 10 — опорная стена

выше защитной структуры должен быть применен также барьер для распространения водяных паров в горизон­тальном направлении.

При изготовлении несущей конструкции и обшивки теплицы из дерева доски должны быть предварительно обработаны составом, защищающим от грибка; доски должны прибиваться так, чтобы вода не проникала через стыки (лучше всего, если доски перекрывают одна дру­гую). Рамы окон и дверей, а также вентиляционные от­верстия должны иметь хорошее уплотнение для предот­вращения неконтролируемой инфильтрации воздуха. Клапаны могут изготовляться из металлического листа или из фанеры и могут поворачиваться вокруг верти­кальной-или горизонтальной оси, расположенной посере­дине или с краю клапана. Все непрозрачные поверхности теплицы (северная стена, нижняя часть южной стены,
фундамент) для уменьшения теплопотерь должны быть теплоизолированы. В качестве теплоизоляции можно ис­пользовать такие материалы, как минераловатные Маты, пенопласты — пенополиуретан, пенополистирол, сухие

Подпись: 12 3 2 Рис. 95. Простая перенос-
ная гелиосушилка:

Подпись: I Рис. 96. Переносная солнечная сушилка: / — деревянный ящик с перфорированными стенками и днищем; 2 —остекление

I — стенка из фанеры; 2 — метал-
лическая сетка; 3 — остекление;
4 — опорные ножки

опилки и стружка, спрессованная солома и др. Следует помнить, что влажные материалы теряют свои теплоизо — ляционые свойства, поэтому особое значение имеет за­щита теплоизоляции от. попадания влаги.

Располагать гелиотецлицу надо так, чтобы конек ее

крыши совпадал с осью росток — запад. Угол наклона южной светопрозрачной поверхности выбирают с таким расчетом, чтобы обеспечить максимальное количество уловленной солнечной энергии в данной местности. Так, для средней полосы оптимальным является наклон в 50— 60°. Угол наклона крыши должен быть равным 20—35°, чтобы хорошо удалялись осадки и грязь. Толщина теп-

image129

Рис. 97. Секционный солнечный опреснитель (дистиллятору

image130

Рис. 98. Пленочный солнечный опреснитель!

I — полимерная пленка: У — трубя; S — строительная конструкція; * — гядро — «кодированНыВ лоток; я — теплоизоляции; S — желоб для дистиллята; 7 — И0Р’ скак води; * — яодяиоі пар; 9 —кокдекеат

лоизоляции северной стены выбирается в пределах 150— 250 мм в зависимости от коэффициента теплопроводнос­ти используемого материала. Остекленная поверхность в ночное время может иметь теплоизоляцию толщиной 20—50 мм. При этом коэффициент теплопотерь через ос­текление может уменьшиться от 6,8 Вт/(ма-°С) при од­ном слое стекла толщиной 3—4 м до 0,75 Вт/(м2-°С| при одном слое стекла и пенополистирольной теплоизоляции толщиной 50 мм. Для теплоизоляции можно использовать легкие пенопластовые маты толщиной 50 мм из экстру­дированного полистирола, закрепляемые магнитами на стекле.

Можно также использовать рулонный эластичный теплоизоляционный материал толщиной 30 мм. Чтобы не образовывался конденсат на холодной поверхности стек­ла (за теплоизоляцией), перед теплоизоляцией надо ус­тановить защиту (из полимерной пленки) от водяных паров. В теплицах больших размеров в ночное время ис­пользуются шторы из полимерной пленки с напыленным отражательным (алюминиевым) покрытием. Благодаря этому теплопотери снижаются на 40—60 %. При исполь­зовании наружной теплоизоляции на остеклении конден­сация водяных паров на стекле не происходит, но между теплоизоляцией (жесткие пенопластовые панели или гибкие маты) и остеклением не должно быть движения воздуха, а сама теплоизоляция должна быть защищена от воздействия осадков. Жесткие теплоизоляционные панели днем откидываются и отражают дополнительное количество солнечной энергии на светопрозрачные по­верхности теплицы.

Фундамент должен доставать до уровня постоянной температуры грунта, а его теплоизоляция должна покры­вать всю ту поверхность фундамента, которая может на­ходиться в области отрицательных температур. Обычно глубина фундамента составляет 80—120 см.

В огородничестве и садоводстве следует больше ис­пользовать грунт, защищенный 1—2 слоями полимерной пленки. Это сокращает сроки созревания на 2—3 недели. При выращивании клубники хороший эффект дает ис­пользование черной полимерной пленки, укладываемой на землю под кустики клубники. При этом подавляется рост сорняков, ускоряется рост клубники и предотвра­щается загрязнение ягод землей. Использование отра­жательных подстилающих цветных (красный цвет для

томатов, белый для картофеля) поверхностей способст­вует более быстрому созреванию плодов и клубней. Так же благотворно влияет отраженный солнечный свет на садовые культуры.

Для подогрева воды для плавательного бассейна и других сезонных потребителей рекомендуется использо­вать неостекленные пластмассовые (полипропиленовые} коллекторы в металлической раме (из алюминия или оцинкованного железа) на легкой металлической опор­ной конструкции.

Широкое применение должны получить солнечные сушилки, которые нетрудно изготовить самим. В § 13 описаны конструкции достаточно простых пленочных су­шилок (см. рис. 54 и 58). Рассмотрим еще некоторые кон­струкции переносных сушилок, которые могут быть ис­пользованы для различных сельхозпродуктов. Сушилка, показанная на рис. 95, представляет собой деревянный ящик (из фанеры или тонких досок) с двумя боковыми стенками и днищем из металлической сетки. Верхняя крышка может сниматься и имеет прозрачное покрытие. Сушилка снабжена четырьмя опорными стойками. Внут­ренняя поверхность ящика окрашена в черный цвет. Це­лесообразно также использовать полностью деревянный ящик с отверстиями для воздуха, а также перфориро­ванное днище с остеклением (рис. 96). Для сушки сена можно использовать сушилку, показанную на рис. 54 При этом воздухонагреватель следует располагать с южной стороны сарая, а саму камеру для сушки сена лучше помещать внутри сарая или амбара.

Можно изготовить также простой солнечный дистил­лятор для обессоливания минерализовайной или опрес­нения морской воды, пбказанный на рис. 97. В качестве материала для этого опреснителя можно использовать пенопласт (полистирол и т. п.). Указанные размеры од­ного модуля — чисто ориентировочные, число параллель­но соединенных аппаратов может быть любым. В каче­стве прозрачной изоляции следует использовать поли­мерную пленку. Простой пленочный опреснитель морской (минерализованной) воды показан на рис. 98. Прозрач­ная пленка, натягиваемая горизонтальной трубой и за­крепленная на стенках, пропускает солнечное излучение, которое поглощается зачерненным дном, от которого на­гревается тонкий слой морской воды. Вода испаряется, и пары конденсируются на пленке в виде капель, стека —

юідих по поверхности пленки в приемный желоб, откуда по трубке дистиллят отводится в сборную емкость. Снизу дистиллятор имеет слой теплоизоляции. Исходная вода периодически подпитывается.

ИЗГОТОВЛЕНИЕ И МОНТАЖ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Коллекторы солнечной энергии, как правило, изготов­ляются в заводских условиях, а на месте они монтиру­ются на опорной конструкции. Однако простые коллек-

торы можно изготовить собственными силами, хотя сле­дует иметь в виду, что их эффективность будет не слиш­ком высокой. Основным элементом солнечного коллек­тора является абсорбер, т. е. лучепоглощающая поверх­ность. Конструктивное выполнение абсорберов различных типов для жидкостных и воздушных коллекторов пока­зано на рис. 10 и 11. В жидкостных коллекторах наибо­лее часто используется лучепоглощающая поверхность, представляющая собой ряд трубок небольшого диаметра (10—15 мм), соединенных с плоским ребром (листом). Трубки могут располагаться сверху, снизу или в плоско­сти листа. Трубки присоединяются к верхнему и нижне­му гидравлическим коллекторам. В других конструкциях используются соединенные между собой плоский и гофри­рованный листы с каналами для теплоносителя либо штампованный абсорбер. В воздушных коллекторах лу — чевоспринимающая поверхность обычно представляет со­бой плоский лист с оребрением или без него, омываемый потоком воздуха снизу, сверху или с обеих сторон.

Для эффективной и надежной работы коллектора в те­чение длительного срока важное значение имеет правиль­ный выбор материала для изготовления абсорбера, о чем говорилось выше. Не менее важно обеспечить хороший тепловой контакт между трубками и оребрением. Ребро может быть приварено, припаяно и присоединено к труб­кам с помощью хомутиков или пружинящих прижимов. Конечно, наилучший способ соединения — сварка или пайка. Способ и качество соединения трубок для тепло­носителя е лучепоглощающим листом сильно влияют на его тепловую эффективность, которая зависит от многих конструктивных факторов.

Корпус коллектора должен быть герметичным и не должен допускать утечки теплоносителя и попадания вла­ги и пыли внутрь коллектора. Для этого остекление долж­но быть надежно уплотнено. Примеры конструктивного выполнения уплотнения узлов соединения лучепоглоща — ющей поверхности н остекления с корпусом показаны на рис. 73.

На рис. 73, а показана конструкция уплотнения двух­слойного остекления жидкостного солнечного коллектора. Стекло уплотняется с помощью П-образной прокладки из силиконовой резины. Для обеспечения необходимого воз­душного зазора толщиной 15—25 мм между слоями ос­текления используется деревяввая или пластмассовая

вставка. При сборке коллектора остекление зажимается между деталью корпуса коллектора и прижимной крыш­кой. Форма этих двух деталей обеспечивает фиксацию их взаимного расположения и положения остекления. Они соединяются с помощью винтов.

На рис, 73, б показан вариант крепления солнечного коллектора на крыше дома. Коллектор содержит луче — поглощающую поверхность с трубами для теплоносителя,

image102

Рис. 73. Конструкция уплотнения двухслойного остекления (а) и крепления солнечного коллектора (б) на крыше дома:

а: I — стекло; 2 — уплотнение: 3 — вставка: 4 — корпус коллектора; S — крыш­ка: 6 — винтовое соединение; б: і — абсорбер; 2 — теплоизоляция: 3 — стекло; 4 — уплотнение; S — штампованная деталь: 6 — накладка; 7 —винтовое соеди­нение; 8 — балка; 9 — стропило; 10 — покровный материал крыши; // — доска; 12 — уголок; S3 — винтовое соединение

теплоизоляцию и однослойное остекление. Стекло поме­щается между двумя резиновыми прокладками на полке фигурной детали корпуса и прижимается с помощью на­кладки и винтового соединения. Коллектор крепится к строительной конструкции крыши, включающей дере­вянную балку и стропило. Покровный материал крыши закрепляется на досках с уплотнительными уголками и резьбовым соединением.

image103 image104

На рис. 74 представлены схемы подвода и отвода жид­кого теплоносителя в коллектор, абсорбер которого вы­полнен из ряда трубок (а и б) или из змеевика (в). Со­единение по схеме б менее удачно, чем по схеме а, так

Рис. 74. Схемы соединения труб в КСЭ:

а — Z-образная схема; б — центральный подвод и отвод воды; в — змеевик

как не обеспечивает равномерного распределения жидко­сти по трубкам. В змеевике (схема в) должен быть ук­лон, обеспечивающий вытеснение воздуха при его запол­нении водой.

Конструктивное исполнение жидкостного штампован­ного коллектора показано на рис. 75. Коллектор может иметь большие размеры, и в нем предусмотрен уклон верхнего и нижнего гидравлических коллекторов для удаления воздуха. Толщина листа 1—1,5 мм, площадь поперечного сечения канала для теплоносителя 10X2 мм, а размеры сечения гидравлических коллекторов 25X3 мм.

Коллектор солнечной энергии может содержать не­сколько отдельных модулей, соединенных параллельно. Для обеспечения равномерного распределения жидкого теплоносителя необходимо использовать схемы соедине­ния, показанные на рис. 76, а и б, или устанавливать на

Рис. 75. Конструкция штампо-
ванного жидкостного солнечно-
го коллектора:

image105

image106

1 — остекленный теплоизолирован-
ный корпус; 2 — канал для тепло-
носителя; 3 — подвод теплоноси-
теля; 4 — отвод теплоносителя

бивается на несколько подмассивов, состоящих из опре­деленного числа рядов, включающих по пять—десять модулей. На рис. 77 показан подмассив из 50 модулей КСЭ, разделенный на десять рядов по пять модулей в каждом.

Коллекторы солнечной энергии могут быть установ­лены на крыше дома, на земле, на козырьке над окном или на навесе для автомобиля (рис. 78). Целесообразно устанавливать коллектор в плоскости наклонной крыши в случае, если углы наклона крыши и КСЭ совпадают.

При монтаже КСЭ на горизонтальной крыше К. СЭ уста­навливают на опорной конструкции, обеспечивающей оптимальный угол наклона. Коллектор может служить ограждением балкона (рис. 79) или быть частью стены.

Подпись: ГВ ГВ Рис. 77. Схемы параллельного соединения плоских fa) и вакуумиро- ванных (б) солнечных коллекторов:

Возможны различные варианты размещения солнеч-

І — нодуль КСЭ; 2 — трубопровод холодной воды; 3 — ответвление к группе КСЭ; 4 — сборный трубопровод горячей воды; 5 — общий трубопровод горячей

воды

ного коллектора на крыше (рис. 80). Коллектор совме­щается с южным склоном крыши (а), составляет часть южной стены (б), размещается вертикально за стеклян­ной частью крыши (в) или устанавливается на опорах на крыше и на балконе (г). Вариант а используется для горячего водоснабжения, остальные — для отопления, так как в системе отопления угол наклона коллектора должен быть большим. Для увеличения поступления солнечного излучения на коллектор применяется плос­кий отражатель (б иг). Бак аккумулятор для горячей воды может размещаться на чердаке.

Совмещение коллектора с крышей дает следующие

image108

Рис. 78. Варианты установки солнечных коллекторов:

о —на земле; б — на крыше дома; в — на навесе для автомобиля; г — как

часть стены

преимущества: удешевляется строительство, так как кол­лектор заменяет крышу и не требуется специальная опор­ная конструкция; снижаются теплопотери коллектора, так как его нижняя поверхность и соединительные трубы не контактируют с наружным воздухом, однако усложня­ются монтаж и ремонт. Недостатком является также то, что угол наклона крыши может не совпадать с оптималь­ным углом наклона коллектора. При свободной установ­ке коллектора или гелиоустановки в целом облегчается монтаж и ремонт, обеспечивается оптимальная ориента­ция и наклон коллектора, но требуется устойчивая опор­ная конструкция, а это повышает стоимость строитель­ства, увеличивает теплопотери от коллектора и труб и при этом не всегда удается удовлетворить эстетичес­кие требования при размещении гелиоустановки на кры­ше дома.

При прохождении труб через крышу или стену отвер­стия должны быть тщательно уплотнены. Осуществляя

image109

Рис. 79. Солнечные коллекторы — ограждение балкона

монтаж КСЭ, следует соблюдать меры предосторожно­сти, чтобы не повредить остекление.

На рис. 81 показан пример расположения солнечно­го коллектора на крыше жилого дома. Обращает на себя внимание рациональное архитектурное решение, обеспе­чивающее хорошее эстетическое восприятие гелиосис­темы.

Крыша должна выдерживать вес гелиоустановки. Для уменьшения локальной нагрузки под ножки опорной конструкции подкладывают настил или швеллеры. При

image110

Рис. 80. Варианты размещения солнечного коллектора на крыше:

а — совмещение с кровлей; б — на южной стене с отражательной поверхно­стью; в — на чердаке с остекленной крышей; г — на опорной конструкции и на балконе; / — коллектор; 2 — бак-аккумулятор; 3 — отражательная поверх­ность; 4 — остекленная крыша; 5—ограждение балкона

необходимости несущая способность крыши должна быть усилена. Гелиоустановка должна быть надежно закреп­лена с помощью проволочных растяжек, анкерных болтов (заделанных в бетонное основание), чтобы она могла выдерживать ветровую нагрузку. Размещать гелиоуста­новку следует ближе к коньку в центре крыши. Все от­верстия для труб должны быть тщательно уплотнены, чтобы в дом не попадала влага.

image111

Рис. 81. Жилой дом с солнечными коллекторами на крыше

Современная тенденция состоит в разработке коллек­торов с малой удельной массой и хорошими оптико-теп­лотехническими характеристиками. При этом легко осу­ществляется их монтаж. Примером может служить кол­лектор МЕГА, разработанный совместно Швецией и Канадой. Особенностью коллектора является применение сворачиваемого в рулон абсорбера, представляющего со­бой медную трубку с алюминиевым ребром с селектив­ным покрытием. Он может иметь большие длину (до 100 м) и поверхность (до 250 м2). На место монтажа сол­нечной установки абсорбер поставляется в виде рулона, а там он «разматывается» и монтируется в корпусе. Тех­нология монтажа демонстрируется на рис. 82. Вначале (/) анкерными болтами закрепляют опорную конструк­цию и подкладывают резиновую надувную подушку под корпус коллектора. Затем на закрепленный в корпусе слой тепловой изоляции укладывают разматываемые по-

image112

image113

Рис. 82. Монтаж крупномасштабного солнечного коллектора

лосы абсорбера, которые предварительно «раздувают». На этом же этапе (2) производят механическое соеди­нение медных трубок абсорбера с гидравлическими кол­лекторами. После этого с помощью _ сжатого воздуха (1 МПа) раздувают все трубки абсорбера до их полного размера в поперечном сечении (5). Па следующем этапе (4) устанавливают остекление, при этом используют ли­сты размером 1,2X1.2 м. Накачивают (5). резиновые ка­меры, поднимающие коллектор до такого положения, ко­торое соответствует оптимальному углу наклона для данной местности. Устанавливают постоянную, опорную конструкцию и убирают надувные подушки (6).

Описанная прогрессивная технология обеспечивает высокую производительность труда монтажников — трое рабочих за день могут собрать 125 м2 коллектора, име­ющего длину 50 м. Единичный модуль размером 2,5>< Х3<2 м поступает е завода в собранном виде (кроме аб­сорбера и остекления), имеет массу 50 кг, поэтому его легко устанавливать двум рабочим.

Эти коллекторы имеют следующие преимущества: ма­лую удельную массу, отнесенную к 1 м2 площади поверх­ности коллектора; отличные оптико-теплотехнические ха­рактеристики: эффективный оптический КПД, который равен 0,746, коэффициент теплопотерь 3,68 Вт/ (м2• К), высокую надежность. В этой конструкции исключается 75—80 % наружных соединений труб, благодаря чему снижаются теплопотери и исключаются затраты на мон­таж, тепло — и гидроизоляцию трубопроводов. При темпе­ратуре теплоносителя до 60 °С можно использовать не­большое количество теплоизоляционного материала, а при более высокой температуре требуется система подав­ления конвекции воздуха в з|зоре между лучепоглоща — ющей поверхностью и остеклением Коллектора. Стои­мость коллектора ниже, чем коллекторов стандартных конструкций, и соответственно меньше срок окупаемости. Еще одной особенностью этого коллектора является ис­пользование легковесной опорной конструкции.

Существенно повышает КПД коллектора наряду с применением селективных покрытий также использо­вание прозрачной гофрированной вставки между одно­слойным остеклением и селективным абсорбером и отра­жательной пленки (фольги) над слоем теплоизоляции ‘(рис. 83). Вставка предназначена для снижения конвек­тивных теплопотерь и изготовлена из фторированного
полимера (пленка толщиной 0,025 мм), имеющего про — пускательную способность 0,98. Абсорбер изготовлен из нержавеющей стали и имеет селективное покрытие. Эф­фективный оптический КПД коллектора равен 0,79, а ко­эффициент теплопотерь 3,3 Вт/(м2-К).

Солнечные коллекторы из полимерных материалов. Дешевые высокоэффективные и надежные плоские сол­нечные коллекторы могут быть изготовлены с широким

Подпись: Рис. 84. Складывающийся жидко-стный коллектор большой длины: Подпись: 1 — абсорбер; 2 — отражатель; «? — полимерная пленка; 4 — теплоизоля- ция; 5 — наружная полимерная плен- ка; 6 — автопокрышка _________ 2________ __

/VWWW

’мш:

Рис. 83. Высокоэффектив-
ный солнечный коллектор с
низкими конвективными
теплопотерями:

1 — прозрачная гофрированная вставка; 2 — остекление; 3 — абсорбер: 4 — отражательная

пленка; 5 — теплоизолирован-
ный корпус

использованием тонких полимерных пленок и пеноплас­тов. Масса КСЭ может быть доведена до 2,5 кг на 1 м2 лучепоглощающей поверхности.

Конструкция КСЭ содержит всего четыре элемента: абсорбер с селективным покрытием, алюминиевую штам­пованную раму, пенопластовую теплоизоляцию и внеш­нюю оболочку из полимерной пленки, приклеенной краме.

Один и тот же элемент выполняет несколько функций. Пленка, служащая прозрачной изоляцией, одновременно обеспечивает подавление конвекции воздуха. Нижняя пленка защищает коллектор от воздействия внешней сре­ды. Обе эти пленки работают на растяжение. В то же время пенопласт, служащий тепловой изоляцией, работа­ет на сжатие.

При рациональном выборе полимерных материалов обеспечивается такая конструкция КСЭ, которая отли­чается высокой эффективностью и хорошими прочностны-
ми характеристиками при малой массе. КСЭ способен выдерживать силу ветра в 5 м/с и более.

Полимерная пленка предварительно термически де­формируется, благодаря чему она образует элементы, работающие на растяжение. В сочетании с жесткой пено­пластовой теплоизоляцией образуется конструкция КСЭ, подобная конструкции предварительно напряженного крыла самолета.

Селективная поглощательная способность абсорбера зависит от толщины пленки. По сравнению со стеклом полимерная пленка лучше пропускает солнечное излуче­ние.

Совершенствование конструкции КСЭ позволит повы­сить его КПД при сравнительно невысокой равновесной температуре, благодаря чему тепловое напряжение ма­териалов абсорбера уменьшится и значительно снизится стоимость при широком выборе полимеров.

На рис. 84 показана конструкция дешевого жидкост­ного КСЭ, который может применяться в гелиосистемах горячего водоснабжения, отопления, опреснения морской воды и т. п. Коллектор содержит абсорбер с каналами для теплоносителя, отражатель, два слоя полимерной пленки с сеткой между ними, теплоизоляцию, защищен­ную полимерной пленкой. Под коллектор подкладывают старые автопокрышки. Коллектор имеет малую массу, его длина может достигать 50 и 100 м. Он может. достав­ляться в рулонах. На месте рулон разворачивают и го­товый коллектор устанавливают на отведенной площад­ке. Стоимость коллектора весьма низкая, кроме того, он прост в эксплуатации, КПД его может достигать 75 %. При длине секции КСЭ 100 м и расходе воды 3 л/с тем­пература воды повышается на 40 °С при плотности по­глощенного потока солнечной радиации 500 Вт/м2, а па­дение давления составляет всего 5 кПа на 100 м длины.

Дешевые воздушные коллекторы могут быть изготов­лены на месте. В частности, часть крыши здания или его стены может быть использована как абсорбер (метал­лический лист), сверху защищенный стеклом, а снизу омываемый потоком воздуха. Другой вариант воздушно­го солнечного коллектора можно самим изготовить, ис­пользуя недорогие и доступные материалы. Корпус кол­лектора изготовляется из фанеры или тонких досок, на дно ящика укладывается слой теплоизоляции толщиной 50—75 мм (минеральная вата или пенопласт), сверху на
него кладется отражательная пленка (фольга), затем в наклонном положении по диагонали закрепляется ме­таллическая сетка, предварительно окрашенная в черный матовый цвет. На сетку кладут небольшой слой (5— И) мм) зачерненной стружки черного металла. Подвод холодного воздуха осуществляется через патрубок 6, а отвод нагретого воздуха — через патрубок 7. Сверху коллектор имеет остекление (рис. 85). Нагрев воздуха солнечной энергией осуществляется при его движении через слой стружки на сетке, который поглощает солнеч­ную энергию. Внутренняя поверхность коллектора долж­на быть покрашена матовой черной краской. Необходимо обеспечить герметичность канала, по которому движется воздух.

Подпись: 8 4 5 ^ 2 J ■ f> Рис. 85. Воздушный солнечный коллектор матричного типа:

1 — Ropjiyc; 2 — теплоизоляция? З — отражательная пленка; 4 — сетка; 5 —стружка; € — подводи* щий патрубок; 7 — отводящий па­трубок; 8 — остекление

Изготовление и установка аккумулятора теплоты.

Бак-аккумулятор горячей воды должен изготовляться промышленным способом. Водяной бак-аккумулятоо теплоты может быть изготовлен из листовой стали, асбо­цементного стекловолокна, бетона, а бункер галечного аккумулятора — из бетона или дерева с металлической обшивкой. Следует иметь в виду, что асбоцементный бак выдерживает температуру не выше 80 °С.

Резервуар должен иметь внутреннее защитное по­крытие. Основание аккумулятора может быть выполнено из бетонной плиты или залито при строительстве фунда­мента дома. Толщина тепловой изоляции составляет от 75 до 300 мм.

Трубопроводы и теплообменники для солнечных ус­тановок. Расход воды в солнечных установках может из­меняться от 30 до 100 л/ч на 1 м2 лучепоглощающей по­верхности КСЭ, точнее, 30—40 л/ч для водонагревате­лей с естественной циркуляцией воды, 40—60 л/ч для установок отопления и горячего водоснабжения с прину­

дительной циркуляцией, 70—100 л/ч для установок, ис­пользуемых в плавательных бассейнах. При использова­нии антифриза, теплоемкость которого на 20 % ниже, чем воды, расход должен быть больше на 20 %. Скорость теплоносителя в трубопроводах должна быть равной 0,5—1м/с. Диаметр трубопроводов можно определить по полезной мощности коллектора. Так, при КПД коллек­тора 0,5, плотности потока солнечной энергии 800 Вт/м2 и разности температур воды в КСЭ 10 °С расход теплоносителя равен 0,5-800/(1,16* 10) =41,3 кг/(м*-ч). При площади поверхности КСЭ 20 м2 и скорости воды 1 м/с площадь поперечного сечения трубопровода соста­вит 41,3-20/(1 -3600* 103) =2,29-10-4 м2 и его диаметр бу­дет равен]/ 4 • 0,000229/л=0,017 м. Скорость воды в во­донагревателях с естественной циркуляцией равна 0,05— 0,1 м/с. Тогда при площади КСЭ 10 м2, удельном рас­ходе воды 30 л/ (м2-ч) и скорости 0,1 м/с диаметр труб составит 32,6 мм.

Скорость воздуха в воздуховодах принимается до 3 м/с. Удельная объемная теплоемкость воздуха в 3500 раз меньше, чем воды, и соответственно объемный рас­ход воздуха в КСЭ составит 50—300 м8/ч на 1 м2 пло­щади поверхности КСЭ. Диаметр воздуховодов в 30 раз больше диаметра трубопроводов для воды.

Теплопотери от трубопроводов существенно умень­шаются при применении теилоизоляции. Так, при диа­метре трубы ’20 и 48 мм без теплоизоляции теплопотери при разности температур воды и наружного воздуха 40 °С составляют 27 и 57 Вт на 1 м длины трубы, а при применении теплоизоляции с коэффициентом теплопро­водности 0,035 Вт/(м-К) и толщине 40 мм — 5,2 и 7,7 Вт соответственно.

Трубопроводы следует прокладывать по кратчайше­му пути между КСЭ, аккумулятором теплоты и потреби­телем в сухих местах с обязательным применением теп­лоизоляции и обеспечением возможности удлинения.

При разности температур 100 °С удлинение составля­ет для стекла 0,45 мм/м, плексигласа 3,5, поливинилхло­рида 3,8, полиэтилена 10, стали 1,2, меди 1,7, алюминия 2,4 мм/м.

Для передачи теплоты из КСЭ в аккумулятор исполь­зуется теплообменник — это может быть змеевик внутри бака-аккумулятора, или рубашка вокруг его наружной поверхности, или отдельный противоточный теплообмен-

 

image117

 

 

image118

САЧ

 

{жНЗ~

 

ОП

 

Котел

 

J—г

 

ОН 3 HJL 3

 

ок 3 рд Уй

ККхыхь«Дя

 

*1

 

РВ

 

д.

 

image119

ник. Коэффициент теплопередачи К составляет 300— 400 Вт/(м2-°С) для рубашки, 500—900 для гладкотруб­ного змеевика в неподвижной жидкости, 1000—2000 Вт/ /(м2*°С) для противоточного теплообменника, а для воз­душного теплообменника /С=12-н20 Вт/(м2>°С). При средней разности температур теплоносителей 8 °С плот­ность передаваемого теплового потока составляет для указанных теплообменников 2,4—3,2; 4—7,2; 8—16 и 0,096—016 кВт/м2. Для нетеплоизолированного трубо­провода коэффициент теплопотерь составляет 10 Вт/ / (м2-°С).

Теплообменник для передачи теплоты из аккумуля­тора к потребителю обычно имеет большие размеры но сравнению с теплообменником в контуре солнечного кол­лектора, и поэтому в большинстве случаев (кроме не­больших установок) используются отдельные теплооб­менные аппараты противоточного типа.

При использовании воздушных коллекторов для на­грева воды требуется пластинчатый теплообменник типа воздух — вода, в этом случае обязательно применение ребер со стороны воздуха, так как теплообмен там про­исходит весьма неинтенсивно и коэффициент теплопере­дачи от воды к воздуху составляй[3] 16—-15 Вт/(м2*°С).

На рис. 86 показана схема солнечной установки ото­пления и горячего водоснабжения с необходимой арма­турой и измерительными; приборами. Для удаления воз­духа в верхней точке установлен воздушник В, из ниж­них точек предусмотрен слив жидкости через дренажные вентили Д, на линии горячей воды установлен пре­дохранительный клапан 17, на линии возврата теплоно — носителя в КСЭ имеются запорные краны 3 (до и после насоса Я), расширительный бак РБ и обратный клапан ОК, на линии подачи водопроводной воды устанавлива­ются регулятор давления РД, запорный кран 3, обрат­ный ОК и предохранительный П клапаны. Включение и выключение насоса происходит автоматически по раз­ности температур в КСЭ и аккумуляторе. На схеме так­же показаны система автоматического управлення (САУ), отопительные приборы (ОП), измерительные приборы— манометр М и термометры Т, линии холод­ной (ХВ) «горячей (ГВ) воды.