Empirical formula for heat values

3.2.2.1 The higher heating value per unit mass of fuel

The gross or higher heating values HHV for coals can also be empirically obtained by using the Dulong equation (Annamalai and Puri, 2007), namely:

HHV[kJ/kg] = 33800 YC + 144153 YH — 18019 YO + 9412 YS (3.2)

where YC, YH, YN, YO and YS are mass fractions of C, H, N, O and S.

Another relation due to Mott and Spooner is (Mason and Gandhi, 1980):

if O < 15%

HHV [kJ/dry kg] = 103.5C%+ 1418.3 x H% + 94.2S% — 145.1 x O (organic)% (3.3) if O > 15%

HHV [kJ/dry kg] = 103.5 x C% + 1418.3 x H% + 94.2 x S%

— {153.2 — 72 x O%/(100 — A%)} x O% (3.4)

Here A = ash content.

Channiwala (1992) considered over 200 species of biomass and fitted the following equation to the data:

HHV [kJ/dry kg] = 34910 YC + 117830 YC — 10340 YO — 21110 YA + 10050 YS — 1510 YN

(3.5)

The experimental data have an error of about 1.5%.

Boie empirical equation for HHV of any fuel CcHhNnOoSs (Annamalai and Puri, 2007):

HHV[kJ/kmole] = 422272 x C + 117387 x H — 155371 x O + 100480 xN + 335508 x S (3.6)

where C, H, O, N and S are the number of carbon, hydrogen, oxygen, nitrogen and sulfur atoms respectively in the fuel. The same equation can be used to determine the stoichiometric oxygen in kg per empirical kg of fuel:

Vo2 = 32 {C + H/4 — (1/2)O + S} = 32C{1 + (H/C)/4 — (1/2)(O/C) + (S/C)} (3.7)

HHV [kJ/kg] = C{422272 + 117387 x (H/C) — 155371 x (O/C)

+ 100480(N/C) + 335508 x (S/C)} (3.8)

Based on the Boie equation, the enthalpy of formation can be derived as:

h0FJ = 28752 x{C — 0.888 x H — 6.168 x O + 6.199N + 1.337 S} [kJ/kmole] (3.9)

Table 3.3. Fuel Properties (adopted from Sweeten et al., 2006 and TAMU, 2006).

Fuel

Type

Source

Ash

Dry loss

FC

VM

C

Coal

ar

T1: Fuel Properties

5.3300

15.1200

42.3800

37.1700

60.3000

Litter biomass

ar

T1: Fuel Properties

26.8100

11.6200

10.9100

50.6500

28.4400

Sewage sludges in Thailand (C1)

dry

Predicting the heating values of sewage sludges in Thailand

38.4000

6.1000

8.6000

53.0000

31.1000

Sewage sludges in Thailand (C2)

dry

Predicting the heating values of sewage sludges in Thailand

42.0000

5.1000

6.7000

51.2000

27.5000

Sewage sludges in Thailand (C3)

dry

Predicting the heating values of sewage sludges in Thailand

43.0000

5.4000

7.0000

50.0000

26.4000

Sewage sludges in Thailand (C4)

dry

Predicting the heating values of sewage sludges in Thailand

48.4000

6.4000

4.0000

47.6000

23.9000

Sewage sludges in Thailand (C5)

dry

Predicting the heating values of sewage sludges in Thailand

51.8000

3.7000

6.0000

42.2000

20.9000

Sewage sludges in Thailand (C6)

dry

Predicting the heating values of sewage sludges in Thailand

61.8000

4.1000

3.7000

34.5000

18.0000

Sewage sludges in Thailand (C7)

dry

Predicting the heating values of sewage sludges in Thailand

56.0000

3.4000

5.0000

39.0000

19.5000

Sewage sludges in Thailand (C8)

dry

Predicting the heating values of sewage sludges in Thailand

63.5000

3.9000

3.2000

33.3000

14.5000

Sewage sludges in Thailand (C9)

dry

Predicting the heating values of sewage sludges in Thailand

64.0000

3.7000

3.1000

32.9000

15.3000

Sewage sludges in Thailand (C10)

dry

Predicting the heating values of sewage sludges in Thailand

67.6000

3.2000

1.8000

30.6000

12.7000

Sewage sludges in Thailand (C11)

dry

Predicting the heating values of sewage sludges in Thailand

72.9000

4.4000

2.2000

24.8000

10.6000

Sewage sludges in Thailand (H1)

dry

Predicting the heating values of sewage sludges in Thailand

39.4000

6.6000

5.1000

55.5000

26.7000

Sewage sludges in Thailand (H2)

dry

Predicting the heating values of sewage sludges in Thailand

40.6000

5.6000

6.8000

52.6000

29.6000

Sewage sludges in Thailand (H3)

dry

Predicting the heating values of sewage sludges in Thailand

45.9000

4.6000

6.5000

47.7000

25.5000

Sewage sludges in Thailand (H4)

dry

Predicting the heating values of sewage sludges in Thailand

45.7000

6.9000

3.9000

50.4000

25.0000

Sewage sludges in Thailand (H5)

dry

Predicting the heating values of sewage sludges in Thailand

60.2000

4.6000

3.2000

36.6000

19.0000

Sewage sludges in Thailand (I1)

dry

Predicting the heating values of sewage sludges in Thailand

42.3000

5.2000

3.2000

54.5000

25.1000

Sewage sludges in Thailand (I2)

dry

Predicting the heating values of sewage sludges in Thailand

51.6000

5.0000

2.8000

45.6000

22.6000

ar: as received

HHV-DAF

H

N

O

S

HHV,

kJ/kg

Boie,

kJ/kg

HHV-DAF,

kJ/kg

Chemical formula

3.6200

0.9600

14.5000

0.2300

23710

30025

29805

CH0.7139N0.0136O0.1805S0.0014

3.7100

3.0350

22.7900

0.6600

12060

19564

19587

ch1.5512n0.0915°0.6015s0.0087

4.2000

3.3000

24.3000

1.1000

13900

21824

22565

CH1.6059N0.0910O0.5865S0.0132

4.1000

4.0000

23.3000

1.1000

13200

21099

22759

ch1.7729n0.1247o0.6360s0.0150

4.1000

4.3000

23.7000

0.9000

12600

20673

22105

ch1.8467n0.1396o0.6739s0.0128

3.9000

3.8000

21.8000

1.3000

11000

21111

21318

CH1.9404N0.1363O0.6847S0.0204

3.4000

3.3000

21.7000

0.9000

10100

19077

20954

ch1.9344n0.1354o0.7794s0.0161

2.9000

2.3000

16.7000

0.8000

9400

21140

24607

ch1.9158n0.1095o0.6964s0.0166

3.2000

3.1000

19.4000

0.8000

8700

19778

19773

CH1.9514N0.1363O0.7468S0.0154

2.6000

2.6000

18.1000

1.2000

6900

17539

18904

CH2.1322N0.1537O0.9370S0.0310

2.5000

2.3000

17.7000

0.5000

6500

18108

18056

ch1.9430n0.1289o0.8684s0.0122

2.0000

1.8000

17.5000

0.6000

5700

15509

17593

CH1.9430N0.1289O0.8684S0.0122

2.0000

1.6000

15.7000

0.4000

4300

16491

15867

CH2.2436N0.1294O1.1118 S0.0141

4.0000

4.3000

27.5000

0.7000

13300

18697

21947

CH1.7814N0.1381O0.7731 s0.0098

4.6000

5.0000

21.5000

1.0000

12800

23212

21549

ch1.8479n0.1448o0.5452s0.0127

3.9000

4.2000

21.7000

1.0000

12400

21145

22921

CH1.8186N0.1412O0.6388S0.0147

3.8000

3.7000

24.3000

0.8000

11100

19941

20442

ch1.8074n0.1269o0.7296s0.0120

3.0000

2.7000

16.8000

1.2000

8200

21606

20603

ch1.8775n0.1218o0.6637s0.0237

4.0000

3.8000

26.1000

0.9000

10900

18912

18891

CH1.8950N0.1298O0.7805S0.0134

3.2000

2.9000

20.3000

2.0000

9900

20259

20455

ch1.6837n0.1100o0.6742s0.0332

Table 3.3. Continued.

Fuel

Type

Source

Ash

Dry loss

FC

VM

C

Sewage sludges in Thailand (I3)

dry

Predicting the heating values of sewage sludges in Thailand

58.8000

4.7000

3.0000

38.2000

18.3000

Misc. manure

ar

n/a

36.3825

50.5000

2.3760

10.7910

9.7020

Sheep manure

ar

n/a

10.9098

47.8000

7.3080

34.0344

21.1932

Mortality Biomass source:

ar

Properties ofthe fuels (MB)

34.2000

0.9600

10.4700

54.3700

38.4500

Brent

Auvermann

(before

treatment)

Cofired coal

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

14.7000

5.0000

61.1400

24.1600

72.7500

Pine shavings

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

0.1000

45.0000

15.2000

84.7000

49.1000

Reed Canary Grass

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

4.1000

65.2000

19.8000

76.1000

45.8000

Sheep manure

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

20.9000

47.8000

14.0000

65.2000

40.6000

Dairy free-stall

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

62.3000

70.3000

7.1000

30.6000

22.1000

Misc. manure

dry

T3: Proximate, ultimate and ash analyses of coal, pine shavings, and animal waste

73.5000

50.5000

4.8000

21.8000

19.6000

DB soil surface

ar

n/a

59.9100

12.2100

3.9200

23.9900

18.0200

DB seperated

ar

n/a

14.9300

25.2600

13.0000

46.8800

35.2000

solids

Texas lignite

ar

n/a

11.5000

38.3000

25.4000

24.8000

37.2000

Wyoming

ar

n/a

5.6000

32.9000

33.0000

28.5000

46.5000

sub-bituminous

Thus an approximate method based on the Boie heat value exists to compute hf of any empirical fuel. If only mass fractions of C, H, N, O and S are known as YC, YH, YN, YO and YS, then the higher heating value of the fuel becomes:

HHVF [kJ/kgfuel] = 35160 YC + 116225 YH — 11090 YO + 6280 YN + 10465 YS (3.10)

One can deduce the lower or net heat value (LHV) when hydrogen in water is excluded giving: LHVf [kJ/kgfuel] = 35160 YC + 94438 YH — 11090 YO + 6280 YN + 10465 YS (3.11)

HHV-DAF

H

N

O

S

HHV,

kJ/kg

Boie,

kJ/kg

HHV-DAF,

kJ/kg

Chemical formula

3.4000

1.8000

18.7000

1.8000

9000

20907

21845

CH2.2093 N0.0843 O0.7670 S0.0368

1.2375

0.4950

1.6335

0.0495

3585

35730

27330

CH1.5167N0.0437°0.1264 S0.0019

2.6622

1.0962

16.0254

0.3132

8372

21455

20275

CH1.4937N0.0443 O0.5676 S0.0055

3.9700

0.2900

22.7100

0.0500

12774

24118

19701

CH1.2278N0.0065O0.4433 S0.0005

3.9100

1.5000

4.8700

2.2700

30512

35070

35770

ch0.6391n0.0177o0.0502s0.0117

6.4000

0.2000

44.0000

0.2000

19475

19876

19494

CH1.5500N0.0035 O0.6727 S0.0015

45.8000

1.0000

42.9000

0.1000

16838

19300

17558

CH1.5837N0.0187O0.7031 s0.0008

5.1000

2.1000

30.7000

0.6000

16037

21455

20274

ch1.4937n0.0443 O0.5676 S0.0055

2.9000

1.1000

11.5000

0.1000

8836

26380

23438

CH1.5604N0.0427O0.3906 S0.0017

2.5000

1.0000

3.3000

0.1000

7243

35730

27332

CH1.5167N0.0437O0.1264 S0.0019

1.4500

1.1500

7.0700

0.1900

4303

26260

15434

CH0.9568N0.0547O0.2945 s0.0039

3.1200

1.9300

19.1500

0.4300

12817

23455

21430

CH1.0540N0.0470O0.4084 S0.0046

2.1000

0.7000

9.6000

0.6000

14290

29009

28466

CH0.6713N0.0161 O0.1937 S0.0060

2.7000

0.7000

11.3000

0.3000

18194

29772

29584

CH0.6905 N0.0129O0.1824 S0.0024

Correlation for adiabatic flame temperature with ash and moisture content is shown and plotted in Figure 3.8.

Figure 3.9 shows the higher heat or gross heat value of C-H-O fuel in kJ per kg of fuel.

3.2.2.2

image042 Подпись: HHV VO2 Подпись: (3.12)

The higher heat value per unit stoichiometric oxygen The heat value per unit stoichiometric oxygen (vO2) defined as:

image045

Figure 3.6. Synergistic NOX reduction from co-firing biomass (adopted from Tillman, 2000).

image046

Figure 3.7. Higher heating valuesHHV for cattle ration, raw FB, partially composted FB, finished com­posted FB, coal, and respective FB + 5% crop residue blends (adopted from Sweeten et al., 2003).

It is well known that the HHVO2 is almost constant for most fuels. For Boie equation, the HHVO2 is given as:

HHVO2 [kJ/kg of O2] = {422272 + 117387 x (H/C) — 155371 x (O/C) + 100480(N/C)

+ 335508 x (S/C)}/(32{1 + (H/C)/4 — (1/2)(O/C) + (S/C)})

(3.13)

image047

Figure 3.8. Correlation of adiabatic flame temperature with moisture and ash contents; Tadiabatic [K] = 2285 — 1.8864 x H2O + 5.0571 x Ash — 0.3089 x H2O x Ash — 0.1802 x H2O2 — 0.1076 x Ash2, H2O and Ash in fractions; multiply T adiabatic in K by 1.8 to obtain T (Annamalai et al., 2007b; Sami et al., 2001).

image048

Figure 3.9. Variation ofHHV with H/C and O/C in C-H-O fuels.

Ignoring S and N, trace elements in fuel, Figure 3.10 plots HHVo2, in kJ per kg of oxygen as HHV/vO2 constant. It is apparent that the HHV per unit mass of O2 burned is approximately the same of about 14250 kJ/kg of oxygen (18.6kJ/SATP liter of oxygen, where SATP means at standard atmospheric temperature and pressure ) or 3280kJ/kg stoich air (3.9kJ/SATP liter of air) for most fuels. For methane, the literature states that HV per unit O2 is 13550 kJ per kg of O2 (17.7kJ/SATP liter of O2) while Boie based equation yields 13934 kJ/kg of O2. For n-octane,

image049

image050the value is 13640 kJ per kg of O2 or 17.82 kJ/liter of O2 (SATP) for CH4 while Boie yields 13730 kJ/kg O2 for Octane.

Figure 3.11 plots the respiratory quotient (RQ), a term used in biological literature (Annamalai and Silva, 2011) and defined as CO2 per kmole of stoichiometric oxygen, an indication of global

warming potential) for various biomass fuels. Typically RQ is about 1 (which is same as that of glucose, C6Hi2O6) for biomass fuels.

3.2.2.3 Heat value of volatile matter

In Figure 3.11 we see how H/C relates in fat, protein, biomass and coal. If the heat of pyrolysis is neglected, the heat of combustion of the coal can be represented as a combination of the contri­bution from the volatile matter (HVVVM) and the contribution from the fixed carbon (HVCFC) in relation to their mass percentages:

Подпись: (3.14)HV Coal = HVv VM + HVc FC

image052 Подпись: (3.15)

If FC = 1 — VM as in the case of dry ash-free (DAF) coals, one can correlate the heating values of volatiles HVv to VM (Annamalai and Puri, 2007). The Volatile Matter Higher heating value (HHVVM) was calculated using:

where HHV is the as received heating value, FC% is the amount of fixed carbon present in the fuel, HHVFC is the higher heating value of the fixed carbon (enthalpy of formation/molecular weight), and VM% is the amount of volatile matter present in the fuel.