Conclusions and next steps

There is growing interest in highly glazed building facades, driven by a variety of architectural, aesthetic, business and environmental rationales. The environmental rationale appears plausible only if conventional glazing systems are replaced by a new generation of high performance, interactive, intelligent faqade systems, that meet the comfort and performance needs of occupants while satisfying owner economic needs and broader societal environmental concerns. The challenge is that new technology, better systems integration using more capable design tools, and smarter building operation are all necessary to meet these goals. The opportunity is to create a new class of buildings that are both environmentally responsible at a regional or global level while providing the amenities and working environments that owners and occupants seek.

BIPV systems could be applied both for existing buildings, and for new ones. They could be introduced on roof coverings, as facades and as skylights/shading devices.

An important requirement for operation at optimum parameters would be that the PV panels were not shadowed.

The BIPV systems could represent for Romania, as well as for developed EU countries a very good solution to be considered in the buildings industry. Although it is not cheap, it could be adopted in the future based on corresponding public education and on legal support granted by specific fiscal facilities.

In June 2008, a BIPV Laboratory developed at Physics Department of PUB and IPA SA was put in operation. It contains: a BIPV system, a monitoring station for measurement of weather parameters and an installation for monitoring of main BIPV physical quantities (see Fig. 2 (a), (b), (c)).

Other two BIPV demonstrative systems must be installed on two pilot buildings: in Bucharest (it will integrate an historical building) and in Timisoara (a new building will be considered). They will have different typologies and we will consider new technologies for PV modules integrated in the architecture of the selected buildings.

Fig. 2. BIPV Laboratory Polytechnic University of Bucharest (PUB); (a) outside view of the BIPV window installed at Physics Department, PUB; (b) Meteorological Station installed at BIPV Laboratory, PUB; (c) inside view of the BIPV system including the inverter and the monitoring station for PV parameters

 

image129

References

[1] IPA SA (coordinator), WUT, PUB, TUT, UAUIM, Promotion of Solar Architecture in Romania (PASOR), Project No. 21039/2007, Research Romania’s Partnership Programme

[2] Nordmann T., July-august 2005, Built-in-future — integration, technical and market issues for PV, Renewable Energy World, 8, no.4.

[3] Harvey D., 2006, Low-Energy buildings and District-Energy Systems, 384 pages, James & James Ltd.

[4] Prasad D. and Snow M., 2005, A Source Book for Building Integrated Photovoltaics (BIPV), 256 pages, EarthScan

[5] http://buildingsolar. com/technology. asp

[6] http://www. terrasolar. com/bipv. html

[7] www. domainnames. com.

[8] www. pvnord. org