WRF Analysis Results

The Weather Research and Forecasting (WRF) system was developed by the National Oceanic and Atmospheric Adminstration (NOAA) National Centers for Environmental Prediction (NCEP). The current release is Version 2.2. The WRF modelling system software is in the public domain and is freely available for community use. The WRF is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable and efficient on available parallel computing platforms. The WRF is suitable for use in a broad range of applications across scales ranging from meters to thousands of kilometres, including:

• Real-time NWP

• Forecast research

• Parameterization research

• Coupled-model applications

• Teaching

The WRF model is run over Europe with 3 nesting levels and using NCEP boundary conditions data. The variable validated is global solar radiation which is a direct output from WRF model. The period of data studied is the year 2005. The spatial resolution of the domain over Spain is 27km.

WRF model has been executed in analysis mode for the domain of the whole Europe with special resolution of 27km approximately and hourly temporal resolution. Three nested domain where used and the model was fed with data from NCEP global model. The period of simulation goes from 1/1/2005 to 28/2/2005.

The validation is done comparing with ground measurements from 40 stations from AEMet and variable direct output downward global solar radiation of WRF model. Normalized results of MBD and RMSD for hourly and daily resolution are presented in Fig. 6-4. The graphic shows all the stations ordered from lower latitude to higher latitude. Stations with lower latitude present a predominance of clear sky situations which results in small errors.

MBE Hourly Solar Radiation Forecasting

20

image107

25 L______________ [_________________ [_________________ Г________________ Г________________ [_______________ [_________________ [_________________ [

36 37 38 39 40 41 42 43 44

Latitude

Подпись: RMSE Hourly Solar Radiation Forecasting 0 36 37 38 39 40 41 42 43 44 Latitude

Fig. 6. Normalized MBD for hourly global solar radiation

Подпись: 20

MBE Daily Solar Radiation Forecasting

-30

36 37 38 39 40 41 42 43 44

Latitude

Fig. 8. Normaliazed MBd for daily global solar radiation

RMSE Daily Solar Radiation Forecasting

 

90

 

36 37 38 39 40 41 42 43 44

Latitude

 

image110

image111 image112

Overall the model is able to reproduce clear sky synoptic conditions. Errors are presents mainly in situations where fronts and huge cloud movements need to be reproduced. Fig. 10-13 presents a synoptic situation from the date 22/2/2005. Fig. 10. is the measurements from the satellite which represents the real situation. Fig. 12 is an instantaneous map of the global irradiance modelled. We can see as the model is missing a lot of small clouds. Fig. 11 and 12 represents measured and WRF modelled hourly global irradiance for two stations, Granada in the South of Spain and Oviedo in the north. In this date the model is getting a contradictory prediction with measurements. In Granada (lower middle part of Fig. 10.) the model is getting an overcast situation in the firs half of the day and clearsky in the other half, although measurements are the other way. In Oviedo (higher middle part of Fig. 10.) it is clearly an overcast situation and the WRF model predicts a clear sky situation.

2. Conclusion

WRF model has been validated for a whole year over Spain. The comparison has been done with ground solar global radiation measurements. Errors are from 30-98% in terms of RMSD for hourly global radiation and from 23-89% in terms of RMSD for daily global radiation. Different synoptic situations have been studied and the WRF model fed with NCEP data is not reproducing them quite well, however ECMWF model reproduce them in a much nicer way. Using ECMWF data as boundary conditions and testing other cloud parameterizations could improve results from WRF model in the future.

References

[1] Veziroglu TN and dot a. 21st Century’s energy: Hydrogen energy system. Energy Conversion and Management 2008; 49:1820-1831.

[2] Patlitzianas KD, Ntotas K, Doukas H, and Psarras J. Assessing the renewable energy producers’ environment in EU accession member states. Energy Conversion and Management 2007; 48:890-897.