The Solar House

The Centre Product Design for Sustainable Development (PDSD) develops research and advanced human education on specific issues focusing on solar energy conversion and environment, [11]. The Centre hosts solar-thermal and solar PV systems, [12], installed on the roofs that are used for research on increasing the efficiency of the solar energy conversion and adapting to the mountain clime, Fig. 1:

The Solar House, under construction, was designing considering the use of the solar-thermal system

(1) and heating pump (8) for heating.

The solar thermal system (S/T) will provide domestic hot water during summer and heating agent in the radiant flooring, fully meeting the heating demands during autumn and spring and partially, during winter, Fig. 2. It comprises of six flat plate collectors and three vacuum tube collectors, two heat storage tanks (1000L), a bi-valent boiler for domestic hot water (400L), and the auxiliary safety parts.

The heating pump (HP) provides supplementary heating during winter and cooling during summer,

Fig. 3. It has a 600m long pipe circuit, a collector/distributor, the soil-water pump (10kW) a buffer heat

image223

accumulator (400L), a bi-valent boiler (300L), and auxiliary parts. As back-up source a condensation heater, using methane gas is installed. The solar-thermal system and the heating pump are designed as independent systems, with a monitoring and data acquisition line installed for each.

The Solar House has, beside the energy provided by the above-mentioned systems, a specific design considering the passive use of the solar radiation. The egg-shape of the house, Fig. 4, favours controlled warm and cold air circuit supporting the heating/cooling loads during the extreme temperatures in summer and, respectively, in winter. The transparent walls (double glazing fenestration) have specific role in lighting and in thermal insulation and are designed with blinds automate operated during warm periods. The radiant flooring acts as a thermal mass, storing the heat resulted as the greenhouse effect during sunny winter days.

S/T

PV

Fig. 4. The Solar House

The 10 kWp PV array in the Centre is grid-connected but an energy balance based on the power used in the Solar House and the power fed in the grid can complete the global picture of the energy consumption in the House.