Summary and conclusions

PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Adding a wind turbine halves the net present costs (NPC) for the coastal locations in the south of Sweden and cuts the NPC by one third for a location as Borlange with low wind speeds. The load that has to be supplied has of course a large impact on the system size and costs. The results from the simulations show that the NPC for a hybrid system designed for an annual load of 6000 kWh will vary between $48,000 and $ 87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location.

However, theses values are calculated for a capacity shortage allowance of 10%. The question is of course if such a shortage is acceptable in a single family house and if not what means could be applied to supply the remaining 10% and what would this cost. These questions have not been studied but as Figure 4 shows for most location it would increase the cost significantly if the last 10% should be supplied with the PV-Wind system. The cost per kWh electricity produced by a PV-Wind-Hybrid system varies between 1.4$ for the worst location and 0.9$ for the best location.

References

[1] Borowy, B. S., and Salameh, Z. M. (1994). "Optimum photovoltaic array size for a hybrid wind/PV system." Energy Conversion, IEEE Transaction on, 9(3), 482-488.

[2] Celik, A. N. (2002). "Optimisation and techno-economic analysis of autonomous photovoltaic-wind hybrid energy systems in comparison to single photovoltaic and wind systems." Energy Conversion and Management, 43(18), 2453-2468.

[3] Koutroulis, E., Kolokotsa, D., Potirakis, A., and Kalaitzakis, K. (2006). "Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms." Solar Energy, 80(9), 1072-1088.

[4] McGowan, J. G., Manwell, J. F., Avelar, C., and Warner, C. L. (1996). "Hybrid wind/PV/diesel hybrid power systems modeling and South American applications." Renewable Energy, 9(1-4), 836­847.

[5] Protogeropoulos, C., Brinkworth, B. J., and Marshall, R. H. (1997). "Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage." International Journal of Energy Research, 21(6), 465-479.

[6] Berruezo, I., and Maison, V. (2006). "Electricity Supply with PV-Wind Systems for Houses Without Grid Connection," Master thesis, Hogskolan Dalarna, Borlange.

[7] Pazmino, V. (2007). "PV-Wind Energy Hybrid Systems Techno-Economic Feasibility Analysis for Different Swedish Locations," Master thesis, Hogskolan Dalarna, Borlange.