Experimental Evaluation of an Indirect Solar Assisted Heat Pump. System for Domestic Water Heating

A. Bridgeman* and S. J. Harrison

Solar Calorimetry Laboratory, Queen’s University, Department of Mechanical and Materials Engineering,

130 Stuart Street, Kingston, ON, K7L 3N6, Canada

Corresponding Author, Bridgeman@me. queensu. ca

Abstract

An indirect solar assisted heat pump (ISAHP) system for heating domestic hot water has shown promise as an alternative to conventional electric or natural gas water heaters. In a previously conducted theoretical study, it was concluded that an ISAHP could operate with a lower life-cycle cost than a conventional solar domestic hot water (SDHW) system. Therefore, to further investigate the feasibility of the proposed system, an experimental study was conducted on a prototype (ISAHP) system. To undertake the study, a fully instrumented heat pump water heater was assembled in a laboratory environment and connected to a simulated “solar heat” input. The “solar” input was provided by an electrically heated circulation loop that delivered temperature-controlled fluid to the heat pump evaporator. This allowed repeatable test sequences to be performed in the laboratory regardless of weather conditions. A simulated solar profile ranging from 750 — 1500 W was delivered to the heater throughout the test. The corresponding fluid temperature ranged from 15 — 37°C, and the results indicated coefficient of performance (COP) values ranging from 2.4 to 3.2. These results, while in close agreement, are approximately 12% lower than those predicted from previous theoretical values.

Keywords: Solar assisted heat pumps, Heat pumps, Domestic water heating, Canada

1. Introduction

In Canada, water heating is the second most energy intensive end use in the residential sector, accounting for 22% of the consumed energy [1]. Due to growing concern for depleting fuel supplies, higher fuel prices and greenhouse gas emissions, alternatives to the conventional water heating methods such as electric and natural gas water heaters are being investigated. Two systems currently receiving considerable attention worldwide are Solar Domestic Water Heaters (SDWHs) and heat pump systems that source energy from the ambient air, or geothermal energy.

While each of these systems may operate with lower energy consumption than a typical electric water heater, both systems have performance limitations. Air-source heat pump water heaters are attractive in temperate regions, but lack popularity in Canada due to the warm temperatures needed for their proper function [2]. Geothermal heat pumps demonstrate improved performance over air source heat pumps because the heat is drawn from the earth, which is much warmer than ambient in the winter. However, due to the ground loops necessary for these types of heat pumps to function, property alterations and high initial costs have made them less practical for existing homes [2]. Solar Domestic Water Heaters have been increasing in popularity in Canada, and can decrease the energy consumption of an electric water heater by up to 90% in the summer [3], but large temperature differences between the collector and ambient air during the winter months lower the collector efficiency significantly, limiting the seasonal performance.

A combined system, known as a Solar Assisted Heat Pump (SAHP) could be used to alleviate many of the disadvantages of either system operating independently. The advantage to the heat pump cycle, by coupling it with a solar thermal collector, is an increase in evaporator temperature over either air-source or ground-source heat pumps. This increase in temperature results in an improved heat pump coefficient of performance (COP). From the solar collector point of view, the use of the heat pump lowers the fluid temperature returning to the collector near or below ambient. This lower temperature increases the collector efficiency, and allows for substantial heat gains with low cost unglazed solar absorber panels, even under marginal conditions [4, 5, 6]. The combined system allows for efficient operation over a wider range of seasons and weather conditions, and for more hours throughout the day.

The concept of a SAHP dates back to 1955 when it was first proposed by Sporn and Ambrose [7]. Numerous studies took place in the 1980s and early 90s examining the feasibility of SAHP systems for either space or water heating. Most of these systems were classified as Direct Expansion Solar Assisted Heat Pumps (DX-SAHP), in which the refrigerant would flow through the solar collector directly, which doubled as the evaporator for the heat pump. Chaturvedi [5, 8] found that collector efficiencies between 40 — 70% were feasible with bare collectors operating under ambient condition in winter, and found heat pump COPs ranging from 2 — 3, which was 30 — 50% higher than air source heat pumps. In the mid 90s Morrison [6] stated that the majority of previous systems proposed had not achieved commercial success due to the complexity of the combination of heat pump and solar collector components, and high installation costs due to the need for plumbing, electrical and refrigeration connections during installation. He then proposed an integral design, in which the collector and heat pump unit were incorporated as an integral part of the storage tank, which must be installed outside. Morrison found only a slight decrease in performance compared to a typical system in Sydney, Australia, but predicted a substantial reduction in cost, and simplification of installation. Huang and Chyng [9, 10] have recently investigated similar integral DX-SAHP systems in Taiwan. They found COPs reaching up to 3.83 during a long term performance test, in which the system was run for 13,000 hours continuously.

Although the integral DX-SAHP overcame installation complexities of SAHP systems and achieved commercial success in some parts of the world, installing the water storage tank outdoors introduces another problem in the Canadian environment. The cold conditions in the winter months increase the heat loss from the tank decreasing the system’s performance. To avoid this problem, an Indirect Solar Assisted Heat Pump (ISAHP) is under investigation at the Queen’s Solar Laboratory in Ontario, Canada. A schematic of an ISAHP is shown in Figure 1. This system differs from a direct solar assisted heat pump in that the heat pump collects energy via a heat exchanger connected to the collector anti-freeze loop, rather than flowing through the collector itself. This eliminates the need for long refrigeration lines and costly refrigeration fittings on the collector, but allows for the heat pump unit and storage tank to be installed inside the residence. Another feature of this system is the external side-arm natural convection heat exchanger, which acts as the heat pump’s condenser. As the heat exchanger transfers energy from the refrigerant to the potable water, the water increases in temperature causing its density to decrease. This induces buoyancy driven natural convection, circulating the water through the heat exchanger and eliminating the need for a pump. Due to the relatively low flow of the natural convection loop, this configuration has the potential for increasing thermal stratification in the storage tank. The benefit of stratification is that it delivers cool fluid from the bottom of the tank to the heat pump condenser, while maintaining hot water at the top of the storage for distribution to the load. This improves the overall system performance [11].

1st Internatio /

Подпись:Подпись: Natural Convection Loop Подпись: Electric PumpПодпись: Expansion ValveПодпись:Подпись: Water Mains SupplyПодпись: Fig. 1. Schematic of an ISAHPimage149To Load